Detection of early bruises in apples using hyperspectral imaging and an improved MobileViT network

瘀伤 高光谱成像 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 计算机视觉 医学 放射科 生物化学 化学 基因
作者
Mianqing Yang,Guoliang Chen,Feng Lv,Yunyun Ma,Yiyun Wang,Qingdian Zhao,Dayang Liu
出处
期刊:Journal of Food Science [Wiley]
标识
DOI:10.1111/1750-3841.17512
摘要

Abstract Apples are susceptible to postharvest bruises, leading to a shortened shelf life and significant waste. Therefore, accurate detection of apple bruises is crucial to mitigate food waste. This study proposed an improved lightweight network based on MobileViT for detecting early‐stage bruises in apples, utilizing hyperspectral imaging technology from 397.66 to 1003.81 nm. After acquiring hyperspectral images, the Otsu threshold algorithm was employed for mask extraction, and principal component analysis was used for feature image extraction. Subsequently, the improved MobileViT network (iM‐ViT) was implemented and compared with traditional algorithms, utilizing depthwise separable convolutions for parameter reduction and integrating local and global features to enhance bruise detection capability. The results demonstrated the superior performance of iM‐ViT in accurately detecting apple bruises, showing significant improvements. The F 1 score and test accuracy for detecting apple bruises using iM‐ViT reached 0.99 and 99.07%, respectively. The fivefold cross‐validation strategy was used to assess the stability and robustness of iM‐ViT, and ablation experiments were performed to explore the effects of depthwise separable convolutions and local features on parameter reduction and classification accuracy improvement for early‐stage bruise detection in apples. The results demonstrated that iM‐ViT effectively reduced parameters and improved the ability to detect early bruises in apples. Practical Application This study proposed an improved lightweight network to detect early bruises in apples, providing a reference for quick detection of bruises caused in the production process. Potential insights into the nondestructive detection of apple bruises using lightweight networks have been presented, which might be applied to mobile or online devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果完成签到,获得积分10
刚刚
Orange应助ypppp采纳,获得10
1秒前
可耐的葶发布了新的文献求助10
1秒前
CipherSage应助咕咕咕采纳,获得10
2秒前
细心帽子完成签到 ,获得积分10
2秒前
ming应助聪明的战斗机采纳,获得10
2秒前
liuliu完成签到,获得积分10
2秒前
丰知然应助奥德修斯凡采纳,获得10
3秒前
123456发布了新的文献求助20
3秒前
violin发布了新的文献求助10
4秒前
思源应助酷酷采纳,获得10
5秒前
7秒前
236发布了新的文献求助10
8秒前
9秒前
10秒前
Xenia应助笑点低中心采纳,获得10
11秒前
11秒前
英姑应助ppc采纳,获得10
11秒前
12秒前
蛙蛙发布了新的文献求助10
14秒前
清新的寄翠完成签到 ,获得积分10
15秒前
18秒前
20秒前
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得200
21秒前
一一应助科研通管家采纳,获得10
21秒前
22秒前
良辰应助科研通管家采纳,获得10
22秒前
22秒前
海鹏完成签到 ,获得积分10
22秒前
调研昵称发布了新的文献求助10
23秒前
23秒前
正在输入中应助XPR采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293688
求助须知:如何正确求助?哪些是违规求助? 2929649
关于积分的说明 8442871
捐赠科研通 2601748
什么是DOI,文献DOI怎么找? 1420123
科研通“疑难数据库(出版商)”最低求助积分说明 660503
邀请新用户注册赠送积分活动 643104