Deep Learning for Cardiac Imaging: Focus on Myocardial Diseases: A Narrative Review

医学 光学(聚焦) 叙述性评论 心脏成像 心脏病学 医学物理学 内科学 重症监护医学 光学 物理
作者
Theodoros Tsampras,Theodora Karamanidou,Giorgos Papanastasiou,Thanos G. Stavropoulos
出处
期刊:Hellenic Journal of Cardiology [Elsevier]
标识
DOI:10.1016/j.hjc.2024.12.002
摘要

The integration of computational technologies into cardiology has significantly advanced the diagnosis and management of cardiovascular diseases. Computational cardiology, particularly through cardiovascular imaging and informatics, enables precise diagnosis of myocardial diseases by utilizing techniques such as echocardiography, cardiac magnetic resonance imaging, and computed tomography. Early-stage disease classification, especially in asymptomatic patients, benefits from these advancements, potentially altering disease progression and improving patient outcomes. Automatic segmentation of myocardial tissue using Deep Learning (DL) algorithms improves efficiency and consistency in analyzing large patient populations. Radiomic analysis can reveal subtle disease characteristics from medical images and can enhance disease detection, enable patient stratification, and facilitate monitoring of disease progression and treatment response. Radiomic biomarkers have already demonstrated high diagnostic accuracy in distinguishing myocardial pathologies and promise treatment individualization in cardiology, earlier disease detection, and disease monitoring. In this context, this narrative review explores the current state of the art in DL applications in medical imaging (CT, CMR, echocardiography and SPECT), focusing on automatic segmentation, radiomic feature phenotyping, and prediction of myocardial diseases, while also discussing challenges in integration of DL models in the clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pluto应助托儿班老四采纳,获得10
2秒前
2秒前
三斤橙子发布了新的文献求助10
3秒前
orixero应助会武功的阿吉采纳,获得10
4秒前
1577925092发布了新的文献求助10
5秒前
明亮无颜发布了新的文献求助10
5秒前
852应助爱听歌蜗牛采纳,获得30
5秒前
留言完成签到,获得积分10
5秒前
Cannycheng完成签到,获得积分10
6秒前
俏皮小小发布了新的文献求助10
7秒前
7秒前
墨染完成签到,获得积分10
7秒前
共享精神应助欣喜数据线采纳,获得10
8秒前
8秒前
CyrusSo524应助wangnn采纳,获得20
9秒前
缥缈书本完成签到 ,获得积分10
12秒前
Snow发布了新的文献求助10
12秒前
英俊的铭应助俏皮小小采纳,获得10
13秒前
13秒前
13秒前
JamesPei应助chenyutong采纳,获得10
13秒前
14秒前
15秒前
15秒前
15秒前
17秒前
迟大猫应助外向鞋子采纳,获得20
18秒前
wenwen发布了新的文献求助10
18秒前
swh完成签到 ,获得积分10
19秒前
22秒前
zz完成签到,获得积分10
22秒前
23秒前
丘比特应助chuhong采纳,获得10
25秒前
25秒前
慕青应助WZQ采纳,获得10
25秒前
25秒前
酷酷的糖豆完成签到,获得积分20
28秒前
NexusExplorer应助xiu采纳,获得10
28秒前
nenoaowu发布了新的文献求助30
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561543
求助须知:如何正确求助?哪些是违规求助? 3135129
关于积分的说明 9411323
捐赠科研通 2835648
什么是DOI,文献DOI怎么找? 1558529
邀请新用户注册赠送积分活动 728347
科研通“疑难数据库(出版商)”最低求助积分说明 716791