DC-Mamba: A Novel Network for Enhanced Remote Sensing Change Detection in Difficult Cases

遥感 变更检测 计算机科学 环境科学 地理
作者
Junyi Zhang,Renwen Chen,Fei Liu,Hao Liu,Boyu Zheng,Chenyu Hu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4186-4186 被引量:1
标识
DOI:10.3390/rs16224186
摘要

Remote sensing change detection (RSCD) aims to utilize paired temporal remote sensing images to detect surface changes in the same area. Traditional CNN-based methods are limited by the size of the receptive field, making it difficult to capture the global features of remote sensing images. In contrast, Transformer-based methods address this issue with their powerful modeling capabilities. However, applying the Transformer architecture to image processing introduces a quadratic complexity problem, significantly increasing computational costs. Recently, the Mamba architecture based on state-space models has gained widespread application in the field of RSCD due to its excellent global feature extraction capabilities and linear complexity characteristics. Nevertheless, existing Mamba-based methods lack optimization for complex change areas, making it easy to lose shallow features or local features, which leads to poor performance on challenging detection cases and high-difficulty datasets. In this paper, we propose a Mamba-based RSCD network for difficult cases (DC-Mamba), which effectively improves the model’s detection capability in complex change areas. Specifically, we introduce the edge-feature enhancement (EFE) block and the dual-flow state-space (DFSS) block, which enhance the details of change edges and local features while maintaining the model’s global feature extraction capability. We propose a dynamic loss function to address the issue of sample imbalance, giving more attention to difficult samples during training. Extensive experiments on three change detection datasets demonstrate that our proposed DC-Mamba outperforms existing state-of-the-art methods overall and exhibits significant performance improvements in detecting difficult cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
mxxz发布了新的文献求助10
1秒前
愉快夕阳完成签到,获得积分10
3秒前
Orange应助三木采纳,获得10
3秒前
123完成签到,获得积分10
4秒前
ME3完成签到,获得积分10
4秒前
共享精神应助tytyty采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
aka2012发布了新的文献求助30
6秒前
6秒前
6秒前
WendyWen发布了新的文献求助200
7秒前
7秒前
TongMan完成签到,获得积分20
7秒前
华仔应助谢谢sang采纳,获得10
7秒前
小衰帅完成签到,获得积分10
7秒前
gyx发布了新的文献求助10
8秒前
科研通AI2S应助开放的大侠采纳,获得10
8秒前
小二郎应助freebird采纳,获得30
8秒前
20231125完成签到,获得积分10
9秒前
四憙发布了新的文献求助10
9秒前
星星完成签到,获得积分10
9秒前
小崽总完成签到,获得积分10
10秒前
是微微发布了新的文献求助10
10秒前
Joy发布了新的文献求助10
10秒前
kx发布了新的文献求助10
11秒前
桃桃奶盖发布了新的文献求助10
11秒前
化鼠发布了新的文献求助10
11秒前
11秒前
蘸水发布了新的文献求助10
11秒前
洞两发布了新的文献求助10
12秒前
科研通AI5应助坦率的果汁采纳,获得10
12秒前
TongMan发布了新的文献求助10
12秒前
xol完成签到 ,获得积分10
12秒前
星星发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199