亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Linking the Electrochemical Characteristics of Cr2O3-Ga2O3 on Glassy Carbon with the Electrocatalytic Reduction of CO2 to C2+ Products

电化学 材料科学 玻璃碳 还原(数学) 碳纤维 电催化剂 无机化学 分析化学(期刊) 电极 化学 循环伏安法 物理化学 复合材料 环境化学 复合数 数学 几何学
作者
Alma Paola Hernandez-Gonzalez,Stephanie Dulovic,Andrew B. Bocarsly
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (61): 4143-4143
标识
DOI:10.1149/ma2024-02614143mtgabs
摘要

For years copper-based electrodes were believed to be the only ones capable of reducing CO 2 (CO 2 RR) into C 2+ products 1 . Recently however, Cu-free electrodes have proved their ability to carry out C-C coupling, in some cases out performing copper electrodes 2–4 . We, in the Bocarsly Lab, developed a Ni-enhanced Cr 2 O 3 -Ga 2 O 3 on glassy carbon electrocatalyst able to reduce CO 2 to 1-butanol with a faradaic efficiency of 42% 5 , more than 10 times larger than what has previously been reported 6 . Our system operates with a 900 mV overpotential in a CO 2 -saturated 0.1 M KCl acidic solution (pH 4.10), a difference among most systems since acidic media favors hydrogen evolution 7 . Mechanistic investigations, indicate that formate is a key building block instead of CO. This is a non-common route for multi-carbon product formation in CO 2 RR 6,8 .These results raise important questions about the characteristics of the electrocatalysts that promote both carbon-carbon bond formation and multi-electron/proton charge transfer. The Ni-enhanced Cr 2 O 3 -Ga 2 O 3 system is particularly intriguing because it is based on an oxide mixture which is non-conducting, although it is the major constituent of the electrode interface. Electron microscopy shows that the interfacial oxide layer forms in a series of islands, in what has been described as a ‘dry riverbed’. At the nanostructure, the oxide islands contain pores of around 5-200 nm and dendrites. We have hypothesized that the role of the oxide coating resides in the alteration of the electrical double layer of the electrode rather than the transport of the electrons. This would result in the modification of the local environment that could enhance the electrocatalysis 9 . To investigate this hypothesis, we have employed a series of electrochemical techniques, including cyclic voltammetry, chronocoulometry, rotating disc electrode and electrochemical impedance spectroscopy; in combination with ex-situ and operando spectroscopical techniques. From the electrochemical behavior of the oxide coated glassy carbon electrode, we look to establish the relationship between its electrochemical characteristics, the electrical double layer and its role in CO 2 RR. Results have shown a modulation in the electrochemical response of the coated surface according to the nature of electrochemical redox probes. References: S. Nitopi et al., Chem Rev , 119 , 7610–7672 (2019) https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00705. Y. Liu, S. Chen, X. Quan, and H. Yu, J Am Chem Soc , 137 , 11631–11636 (2015) https://pubs.acs.org/doi/full/10.1021/jacs.5b02975. D. A. Torelli et al., ACS Catal , 6 , 2100–2104 (2016) https://pubs.acs.org/doi/full/10.1021/acscatal.5b02888. A. R. Paris and A. B. Bocarsly, (2017) https://pubs.acs.org/sharingguidelines. S. P. Cronin et al., J Am Chem Soc , 145 , 6762–6772 (2023) https://pubs.acs.org/doi/full/10.1021/jacs.2c12251. M. Choi, S. Bong, J. W. Kim, and J. Lee, ACS Energy Lett , 6 , 2090–2095 (2021) https://pubs.acs.org/doi/full/10.1021/acsenergylett.1c00723. M. T. M. Koper, Chem Sci , 4 , 2710 (2013) www.rsc.org/chemicalscience. K. U. D. Calvinho et al., Energy Environ Sci , 11 , 2550–2559 (2018) https://pubs.rsc.org/en/content/articlehtml/2018/ee/c8ee00936h. C. Chen et al., Chem Soc Rev , 53 , 2022–2055 (2024).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
57秒前
110o完成签到,获得积分10
59秒前
110o发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
Kashing完成签到,获得积分0
3分钟前
3分钟前
Lin发布了新的文献求助10
3分钟前
典雅的夜梦完成签到 ,获得积分10
3分钟前
4分钟前
Lin完成签到,获得积分10
5分钟前
XY完成签到 ,获得积分10
5分钟前
西柚柠檬完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
微笑的皮卡丘完成签到,获得积分10
6分钟前
Akim应助luyang采纳,获得10
6分钟前
6分钟前
sissiarno应助Kamalika采纳,获得200
6分钟前
daomaihu完成签到,获得积分20
7分钟前
顾矜应助刚刚好-LG采纳,获得30
7分钟前
7分钟前
小新小新完成签到 ,获得积分10
7分钟前
jj发布了新的文献求助10
8分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
jj完成签到,获得积分20
8分钟前
8分钟前
大个应助盐咸小狗采纳,获得10
8分钟前
xl发布了新的文献求助10
8分钟前
科研通AI2S应助jj采纳,获得10
8分钟前
8分钟前
盐咸小狗发布了新的文献求助10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292524
求助须知:如何正确求助?哪些是违规求助? 4443053
关于积分的说明 13830835
捐赠科研通 4326500
什么是DOI,文献DOI怎么找? 2374916
邀请新用户注册赠送积分活动 1370236
关于科研通互助平台的介绍 1334763