Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma

鼻咽癌 免疫系统 基因表达 内科学 医学 基因 恶性肿瘤 生物信息学 癌症研究 计算生物学 生物 免疫学 遗传学 放射治疗
作者
Changlin Liu,Chuping Ni,Chao Li,Tian Hu,W. W. Jian,Yuping Zhong,Yanqing Zhou,Xiaoming Lyu,Yuanbin Zhang,Xiaojun Xiang,Chao Cheng,Xin Li
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1): 1116-1116 被引量:14
标识
DOI:10.1186/s12967-024-05935-9
摘要

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high rates of morbidity and mortality, largely because of its late diagnosis and metastatic potential. Lactate metabolism and protein lactylation are thought to play roles in NPC pathogenesis by modulating the tumor microenvironment and immune evasion. However, research specifically linking lactate-related mechanisms to NPC remains limited. This study aimed to identify lactate-associated biomarkers in NPC and explore their underlying mechanisms, with a particular focus on immune modulation and tumor progression. To achieve these objectives, we utilized a bioinformatics approach in which publicly available gene expression datasets related to NPC were analysed. Differential expression analysis revealed differentially expressed genes (DEGs) between NPC and normal tissues. We performed weighted gene coexpression network analysis (WGCNA) to identify module genes significantly associated with NPC. Overlaps among DEGs, key module genes and lactate-related genes (LRGs) were analysed to derive lactate-related differentially expressed genes (LR-DEGs). Machine learning algorithms can be used to predict potential biomarkers, and immune infiltration analysis can be used to examine the relationships between identified biomarkers and immune cell types, particularly M0 macrophages and B cells. A total of 1,058 DEGs were identified between the NPC and normal tissue groups. From this set, 372 key module genes associated with NPC were isolated. By intersecting the DEGs, key module genes and lactate-related genes (LRGs), 17 lactate-related DEGs (LR-DEGs) were identified. Using three machine learning algorithms, this list was further refined, resulting in three primary lactate-related biomarkers: TPPP3, MUC4 and CLIC6. These biomarkers were significantly enriched in pathways related to "immune cell activation" and the "extracellular matrix environment". Additionally, M0 and B macrophages were found to be closely associated with these biomarkers, suggesting their involvement in shaping the NPC immune microenvironment. In summary, this study identified TPPP3, MUC4 and CLIC6 as lactate-associated clinical modelling indicators linked to NPC, providing a foundation for advancing diagnostic and therapeutic strategies for this malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助yr采纳,获得10
刚刚
syzh发布了新的文献求助10
1秒前
2秒前
科研通AI6应助zheweiwang采纳,获得10
4秒前
坦率紫菜完成签到,获得积分10
4秒前
doctorduanmu发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分10
7秒前
洒脱发布了新的文献求助10
11秒前
Damtree发布了新的文献求助10
11秒前
动人的代芹完成签到,获得积分10
12秒前
科研通AI6应助博珺辰采纳,获得10
12秒前
SciGPT应助零距离采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
科研通AI6应助yr采纳,获得30
14秒前
柔弱的芷珍完成签到,获得积分10
15秒前
赘婿应助catear采纳,获得10
15秒前
hbhsjk完成签到,获得积分10
21秒前
22秒前
武雨寒发布了新的文献求助10
22秒前
数学情缘完成签到,获得积分10
22秒前
Emi完成签到 ,获得积分10
22秒前
SciGPT应助山水之乐采纳,获得10
23秒前
在水一方应助mont采纳,获得10
23秒前
23秒前
Criminology34应助左西采纳,获得10
24秒前
24秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
25秒前
happyday发布了新的文献求助10
28秒前
29秒前
芃芃完成签到 ,获得积分10
31秒前
32秒前
诺诺完成签到 ,获得积分10
35秒前
36秒前
aaaa完成签到 ,获得积分10
37秒前
mont完成签到,获得积分10
38秒前
38秒前
123456789完成签到 ,获得积分10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439