亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma

鼻咽癌 免疫系统 基因表达 内科学 医学 基因 恶性肿瘤 生物信息学 癌症研究 计算生物学 生物 免疫学 遗传学 放射治疗
作者
Changlin Liu,Chuping Ni,Chao Li,Tian Hu,W. W. Jian,Yuping Zhong,Yanqing Zhou,Xiaoming Lyu,Yuanbin Zhang,Xiaojun Xiang,Chao Cheng,Xin Li
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-05935-9
摘要

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high rates of morbidity and mortality, largely because of its late diagnosis and metastatic potential. Lactate metabolism and protein lactylation are thought to play roles in NPC pathogenesis by modulating the tumor microenvironment and immune evasion. However, research specifically linking lactate-related mechanisms to NPC remains limited. This study aimed to identify lactate-associated biomarkers in NPC and explore their underlying mechanisms, with a particular focus on immune modulation and tumor progression. To achieve these objectives, we utilized a bioinformatics approach in which publicly available gene expression datasets related to NPC were analysed. Differential expression analysis revealed differentially expressed genes (DEGs) between NPC and normal tissues. We performed weighted gene coexpression network analysis (WGCNA) to identify module genes significantly associated with NPC. Overlaps among DEGs, key module genes and lactate-related genes (LRGs) were analysed to derive lactate-related differentially expressed genes (LR-DEGs). Machine learning algorithms can be used to predict potential biomarkers, and immune infiltration analysis can be used to examine the relationships between identified biomarkers and immune cell types, particularly M0 macrophages and B cells. A total of 1,058 DEGs were identified between the NPC and normal tissue groups. From this set, 372 key module genes associated with NPC were isolated. By intersecting the DEGs, key module genes and lactate-related genes (LRGs), 17 lactate-related DEGs (LR-DEGs) were identified. Using three machine learning algorithms, this list was further refined, resulting in three primary lactate-related biomarkers: TPPP3, MUC4 and CLIC6. These biomarkers were significantly enriched in pathways related to "immune cell activation" and the "extracellular matrix environment". Additionally, M0 and B macrophages were found to be closely associated with these biomarkers, suggesting their involvement in shaping the NPC immune microenvironment. In summary, this study identified TPPP3, MUC4 and CLIC6 as lactate-associated clinical modelling indicators linked to NPC, providing a foundation for advancing diagnostic and therapeutic strategies for this malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
4秒前
阿俊发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
16秒前
我是笨蛋完成签到 ,获得积分10
20秒前
41秒前
可靠的雪青完成签到 ,获得积分10
45秒前
1分钟前
张张发布了新的文献求助10
1分钟前
CipherSage应助张张采纳,获得10
1分钟前
1分钟前
比比谁的速度快应助RAIN采纳,获得10
1分钟前
fishss完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
phospho完成签到 ,获得积分10
2分钟前
lyh的老公发布了新的文献求助10
2分钟前
lyh的老公完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
张张发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
大胆的碧菡完成签到,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
yx_cheng应助科研通管家采纳,获得10
6分钟前
yuancw完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
Drwang完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008356
求助须知:如何正确求助?哪些是违规求助? 3548096
关于积分的说明 11298684
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811188