已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MA-SAM: A Multi-atlas Guided SAM Using Pseudo Mask Prompts without Manual Annotation for Spine Image Segmentation

地图集(解剖学) 注释 人工智能 计算机科学 分割 计算机视觉 图像分割 计算机图形学(图像) 医学 解剖
作者
Dingwei Fan,Junyong Zhao,Chunlin Li,Xinlong Wang,R. Zhang,Qi Zhu,Mingliang Wang,Haipeng Si,Daoqiang Zhang,Liang Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3524570
摘要

Accurate spine segmentation is crucial in clinical diagnosis and treatment of spine diseases. However, due to the complexity of spine anatomical structure, it has remained a challenging task to accurately segment spine images. Recently, the segment anything model (SAM) has achieved superior performance for image segmentation. However, generating high-quality points and boxes is still laborious for high-dimensional medical images. Meanwhile, an accurate mask is difficult to obtain. To address these issues, in this paper, we propose a multi-atlas guided SAM using multiple pseudo mask prompts for spine image segmentation, called MA-SAM. Specifically, we first design a multi-atlas prompt generation sub-network to obtain the anatomical structure prompts. More specifically, we use a network to obtain coarse mask of the input image. Then atlas label maps are registered to the coarse mask. Subsequently, a SAM-based segmentation sub-network is used to segment images. Specifically, we first utilize adapters to fine-tune the image encoder. Meanwhile, we use a prompt encoder to learn the anatomical structure prior knowledge from the multi-atlas prompts. Finally, a mask decoder is used to fuse the image and prompt features to obtain the segmentation results. Moreover, to boost the segmentation performance, different scale features from the prompt encoder are concatenated to the Upsample Block in the mask decoder. We validate our MA-SAM on the two spine segmentation tasks, including spine anatomical structure segmentation with CT images and lumbosacral plexus segmentation with MR images. Experiment results suggest that our method achieves better segmentation performance than SAM with points, boxes, and mask prompts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuhaha完成签到,获得积分10
刚刚
晚风完成签到,获得积分10
3秒前
leslie完成签到 ,获得积分10
4秒前
静静发布了新的文献求助10
4秒前
5秒前
6秒前
活力的小猫咪完成签到 ,获得积分10
6秒前
7秒前
卡琳完成签到 ,获得积分10
7秒前
WYJ完成签到,获得积分10
8秒前
窦慕卉发布了新的文献求助10
9秒前
10秒前
Rewi_Zhang发布了新的文献求助10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得30
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
12秒前
Tender完成签到,获得积分10
12秒前
12秒前
12秒前
Ak完成签到,获得积分10
12秒前
hyaoooo完成签到 ,获得积分10
13秒前
fengfenghao完成签到,获得积分10
13秒前
聪慧雪曼发布了新的文献求助10
14秒前
彭于晏应助靓丽可乐采纳,获得10
16秒前
16秒前
活力的bird发布了新的文献求助20
17秒前
amengptsd完成签到,获得积分10
18秒前
Rewi_Zhang完成签到,获得积分10
20秒前
21秒前
22秒前
wushuping发布了新的文献求助10
22秒前
小艳完成签到,获得积分10
24秒前
聪慧雪曼完成签到,获得积分10
25秒前
ccc发布了新的文献求助10
26秒前
lin完成签到 ,获得积分10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253