MA-SAM: A Multi-atlas Guided SAM Using Pseudo Mask Prompts without Manual Annotation for Spine Image Segmentation

地图集(解剖学) 人工智能 计算机科学 分割 计算机视觉 编码器 图像分割 尺度空间分割 模式识别(心理学) 医学 解剖 操作系统
作者
Dingwei Fan,Junyong Zhao,Chunlin Li,Xinlong Wang,R. Zhang,Qi Zhu,Mingliang Wang,Haipeng Si,Daoqiang Zhang,Liang Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3524570
摘要

Accurate spine segmentation is crucial in clinical diagnosis and treatment of spine diseases. However, due to the complexity of spine anatomical structure, it has remained a challenging task to accurately segment spine images. Recently, the segment anything model (SAM) has achieved superior performance for image segmentation. However, generating high-quality points and boxes is still laborious for high-dimensional medical images. Meanwhile, an accurate mask is difficult to obtain. To address these issues, in this paper, we propose a multi-atlas guided SAM using multiple pseudo mask prompts for spine image segmentation, called MA-SAM. Specifically, we first design a multi-atlas prompt generation sub-network to obtain the anatomical structure prompts. More specifically, we use a network to obtain coarse mask of the input image. Then atlas label maps are registered to the coarse mask. Subsequently, a SAM-based segmentation sub-network is used to segment images. Specifically, we first utilize adapters to fine-tune the image encoder. Meanwhile, we use a prompt encoder to learn the anatomical structure prior knowledge from the multi-atlas prompts. Finally, a mask decoder is used to fuse the image and prompt features to obtain the segmentation results. Moreover, to boost the segmentation performance, different scale features from the prompt encoder are concatenated to the Upsample Block in the mask decoder. We validate our MA-SAM on the two spine segmentation tasks, including spine anatomical structure segmentation with CT images and lumbosacral plexus segmentation with MR images. Experiment results suggest that our method achieves better segmentation performance than SAM with points, boxes, and mask prompts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助要减肥的香芦采纳,获得10
刚刚
阔达金鱼发布了新的文献求助10
1秒前
Ing发布了新的文献求助10
2秒前
2秒前
所所应助落寞之云采纳,获得10
3秒前
3秒前
BU会完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
兔年吉祥完成签到,获得积分20
5秒前
5秒前
充电宝应助高序采纳,获得10
5秒前
Akim应助勤劳代亦采纳,获得10
5秒前
丁仪完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助大力的水风采纳,获得10
7秒前
7秒前
7秒前
中宝发布了新的文献求助10
7秒前
7秒前
Ava应助Ing采纳,获得10
7秒前
7秒前
8秒前
樱悼柳雪发布了新的文献求助10
8秒前
9秒前
stefan发布了新的文献求助10
9秒前
大傻春发布了新的文献求助10
9秒前
852应助亮亮采纳,获得10
9秒前
10秒前
10秒前
fff发布了新的文献求助10
10秒前
庞鲂发布了新的文献求助30
10秒前
勤劳的老九应助兔年吉祥采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
sofar完成签到 ,获得积分10
11秒前
11秒前
12秒前
小马甲应助sup采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202