MA-SAM: A Multi-atlas Guided SAM Using Pseudo Mask Prompts without Manual Annotation for Spine Image Segmentation

地图集(解剖学) 人工智能 计算机科学 分割 计算机视觉 编码器 图像分割 尺度空间分割 模式识别(心理学) 医学 解剖 操作系统
作者
Dingwei Fan,Junyong Zhao,Chunlin Li,Xinlong Wang,R. Zhang,Qi Zhu,Mingliang Wang,Haipeng Si,Daoqiang Zhang,Liang Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3524570
摘要

Accurate spine segmentation is crucial in clinical diagnosis and treatment of spine diseases. However, due to the complexity of spine anatomical structure, it has remained a challenging task to accurately segment spine images. Recently, the segment anything model (SAM) has achieved superior performance for image segmentation. However, generating high-quality points and boxes is still laborious for high-dimensional medical images. Meanwhile, an accurate mask is difficult to obtain. To address these issues, in this paper, we propose a multi-atlas guided SAM using multiple pseudo mask prompts for spine image segmentation, called MA-SAM. Specifically, we first design a multi-atlas prompt generation sub-network to obtain the anatomical structure prompts. More specifically, we use a network to obtain coarse mask of the input image. Then atlas label maps are registered to the coarse mask. Subsequently, a SAM-based segmentation sub-network is used to segment images. Specifically, we first utilize adapters to fine-tune the image encoder. Meanwhile, we use a prompt encoder to learn the anatomical structure prior knowledge from the multi-atlas prompts. Finally, a mask decoder is used to fuse the image and prompt features to obtain the segmentation results. Moreover, to boost the segmentation performance, different scale features from the prompt encoder are concatenated to the Upsample Block in the mask decoder. We validate our MA-SAM on the two spine segmentation tasks, including spine anatomical structure segmentation with CT images and lumbosacral plexus segmentation with MR images. Experiment results suggest that our method achieves better segmentation performance than SAM with points, boxes, and mask prompts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fg2477完成签到,获得积分10
2秒前
忙碌的数学人完成签到,获得积分10
2秒前
情怀应助Engen采纳,获得10
2秒前
HJJHJH完成签到,获得积分10
4秒前
Bob发布了新的文献求助10
5秒前
6秒前
7秒前
HJJHJH发布了新的文献求助50
8秒前
JW完成签到,获得积分10
8秒前
wanci应助张参采纳,获得10
9秒前
谦让的西装完成签到 ,获得积分10
10秒前
李演员完成签到,获得积分10
11秒前
fei菲飞完成签到,获得积分10
11秒前
13秒前
Zhaowx完成签到,获得积分10
13秒前
Theprisoners完成签到,获得积分0
13秒前
木子发布了新的文献求助30
13秒前
13秒前
下课了吧完成签到,获得积分10
14秒前
丘比特应助xialuoke采纳,获得10
15秒前
zgt01发布了新的文献求助10
17秒前
linfordlu完成签到,获得积分0
17秒前
清浅发布了新的文献求助10
18秒前
风趣的涵柏完成签到,获得积分10
19秒前
21秒前
Chen完成签到 ,获得积分10
22秒前
23秒前
木樨完成签到,获得积分10
24秒前
科研顺利完成签到,获得积分10
25秒前
Bin完成签到,获得积分10
26秒前
gszy1975发布了新的文献求助10
26秒前
十曰发布了新的文献求助10
27秒前
28秒前
28秒前
jiaolulu发布了新的文献求助10
33秒前
畅快的念烟完成签到,获得积分10
35秒前
丽莫莫完成签到,获得积分10
35秒前
钙离子完成签到,获得积分10
36秒前
情怀应助OLDBLOW采纳,获得10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022