亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretation and prediction of the three-dimensional coherent structure and its dynamics of tornado-like vortex via delayed proper orthogonal decomposition

龙卷风 物理 涡流 口译(哲学) 涡度 统计物理学 经典力学 机械 气象学 计算机科学 程序设计语言
作者
Lei Zhou,Bernd R. Noack,K.T. Tse,Xuhui He
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1) 被引量:1
标识
DOI:10.1063/5.0234437
摘要

This study proposes a three-dimensional mode-based surrogate framework to predict the tornado-like vortex (TLV) derived from the fuzzy neural network and delayed proper orthogonal decomposition method. First, near-break-down TLV is simulated via large-eddy simulation, and its mean, fluctuating and statistical flow feature is analyzed. Then, three-dimensional spatiotemporal features of coherent structure are extracted and interpreted. Next, the capability of the proposed framework to predict the future state of an unsteady chaotic TLV flow field is systematically evaluated, including the spatiotemporal variation of velocity, pressure, and vorticities as well as flow statistics. Finally, parametric analysis is also conducted to investigate the influence of three key parameters [i.e., Fuzzy rules of the state network or output network (K1 or K2), time delayed embedding number (d)] contained in the framework and the step number of forward prediction (K) on the predicted accuracy. Results show that for near-break-down TLV, vortex wandering effect largely affects its dynamical feature, and its three-dimensional characteristics are distinct, exhibiting the essence of the swirling jet flow. 3D mode-based surrogate model can correctly predict the tornado-like vortex with a relative error of less than 2% for the radial, tangential, and vertical velocity component. It is found that fuzzy rules and time-delayed embedding number has great effect on prediction accuracy. Thus, to achieve optimal predicting effect, it is suggested that d is taken as 8, K1, and K2 are taken as 18, and when making multi-step predictions, the largest K should not exceed 7.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwang9301完成签到,获得积分10
11秒前
19秒前
静文发布了新的文献求助10
24秒前
24秒前
liudy完成签到,获得积分10
28秒前
YL完成签到,获得积分10
30秒前
liudy发布了新的文献求助10
31秒前
小马甲应助费老三采纳,获得10
34秒前
科研通AI2S应助Mryuan采纳,获得10
39秒前
43秒前
费老三发布了新的文献求助10
47秒前
糊涂的青烟完成签到 ,获得积分10
1分钟前
科研通AI5应助夏天无采纳,获得10
1分钟前
1分钟前
野性的胡萝卜完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
研友_8yNl3L完成签到,获得积分10
2分钟前
研友_8yNl3L发布了新的文献求助10
2分钟前
2分钟前
追寻青柏发布了新的文献求助10
2分钟前
2分钟前
小蘑菇应助骨外6点尹医生采纳,获得10
2分钟前
Nancy发布了新的文献求助30
2分钟前
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
SciGPT应助eurhfe采纳,获得10
3分钟前
4分钟前
纯情的惜海完成签到,获得积分10
4分钟前
科研通AI5应助sailingluwl采纳,获得10
4分钟前
4分钟前
5分钟前
sailingluwl发布了新的文献求助10
5分钟前
5分钟前
热情紫丝发布了新的文献求助10
5分钟前
夏天无发布了新的文献求助10
5分钟前
林非鹿完成签到,获得积分10
5分钟前
5分钟前
yinlao完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555754
求助须知:如何正确求助?哪些是违规求助? 3131370
关于积分的说明 9390913
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556351
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715820