清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AEFNet: A Real-Time Network for Detecting Prohibited Items in X-Ray Images Across Complex Scenarios

计算机科学 人工智能 实时计算 计算机视觉
作者
Kaiyuan Zhu,Xinyu Chang,Qing Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb05d
摘要

Abstract Accurate identification of prohibited items in X-ray security images is essential for ensuring public safety. However, current methodologies struggle to simultaneously address irregular deformation, multi-scale features, and background occlusion of prohibited items, leading to inadequate detection accuracy. To address these challenges, we propose an Adaptive Efficient Focusing Network (AEFNet) designed to target regions, thereby enhancing the automatic detection of prohibited items. Specifically, to accommodate the irregular deformation of target regions, we introduce the DACSP module, which dynamically adjusts sampling positions to enhance the network’s adapt ability and focus on occluded targets. For addressing detail loss and managing multi-scale features, we propose the Multi-scale Focus Feature (MFF) module and the Focusing Diffusion Pyramid Network (FDPN), which enable the fusion of semantic and perceptual features, improving use of contextual information at different detection scales. Additionally, detail-enhanced convolution improves the efficacy of feature utilization at different scales, while facilitating a lightweight network design. Finally, we employ the PIoUv2 function to optimize localization loss, resulting in significant performance enhancement. Experimental results show that AEFNet performs effectively across various X-ray security image datasets (PIDray, CLCXray, OPIXray) achieving 74.7%, 61.3%, and 89.2% mAP respectively, and AEFNet also demonstrates strong generalization capabilities on the PASCAL VOC dataset in non-prohibited item detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
21秒前
名侦探柯基完成签到 ,获得积分10
22秒前
souther完成签到,获得积分0
31秒前
32秒前
43秒前
1分钟前
Ava应助Dash采纳,获得10
1分钟前
Lucas应助Dash采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
白柏233完成签到,获得积分10
2分钟前
完美世界应助凡凡采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI5应助null采纳,获得10
3分钟前
慕青应助MSl采纳,获得10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
柒柒球完成签到 ,获得积分10
4分钟前
allrubbish完成签到,获得积分10
4分钟前
哈扎尔发布了新的文献求助10
4分钟前
5分钟前
5分钟前
mmmmmmgm完成签到 ,获得积分10
5分钟前
5分钟前
苹果完成签到 ,获得积分10
6分钟前
刘玲完成签到 ,获得积分10
6分钟前
6分钟前
儒雅的山河完成签到 ,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
jerry完成签到 ,获得积分10
6分钟前
通科研完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541217
求助须知:如何正确求助?哪些是违规求助? 3974881
关于积分的说明 12310977
捐赠科研通 3642163
什么是DOI,文献DOI怎么找? 2005731
邀请新用户注册赠送积分活动 1041137
科研通“疑难数据库(出版商)”最低求助积分说明 930365