AEFNet: A Real-Time Network for Detecting Prohibited Items in X-Ray Images Across Complex Scenarios

计算机科学 人工智能 实时计算 计算机视觉
作者
Kaiyuan Zhu,Xinyu Chang,Qing Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb05d
摘要

Abstract Accurate identification of prohibited items in X-ray security images is essential for ensuring public safety. However, current methodologies struggle to simultaneously address irregular deformation, multi-scale features, and background occlusion of prohibited items, leading to inadequate detection accuracy. To address these challenges, we propose an Adaptive Efficient Focusing Network (AEFNet) designed to target regions, thereby enhancing the automatic detection of prohibited items. Specifically, to accommodate the irregular deformation of target regions, we introduce the DACSP module, which dynamically adjusts sampling positions to enhance the network’s adapt ability and focus on occluded targets. For addressing detail loss and managing multi-scale features, we propose the Multi-scale Focus Feature (MFF) module and the Focusing Diffusion Pyramid Network (FDPN), which enable the fusion of semantic and perceptual features, improving use of contextual information at different detection scales. Additionally, detail-enhanced convolution improves the efficacy of feature utilization at different scales, while facilitating a lightweight network design. Finally, we employ the PIoUv2 function to optimize localization loss, resulting in significant performance enhancement. Experimental results show that AEFNet performs effectively across various X-ray security image datasets (PIDray, CLCXray, OPIXray) achieving 74.7%, 61.3%, and 89.2% mAP respectively, and AEFNet also demonstrates strong generalization capabilities on the PASCAL VOC dataset in non-prohibited item detection scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adrenaline完成签到,获得积分10
2秒前
zissx发布了新的文献求助10
2秒前
bingqian_yao完成签到,获得积分10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
HaonanZhang应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Cleo应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
HaonanZhang应助科研通管家采纳,获得10
3秒前
luckypig发布了新的文献求助10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
小小K发布了新的文献求助10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
HHM完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
陌回应助科研通管家采纳,获得10
3秒前
HaonanZhang应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841