AEFNet: A Real-Time Network for Detecting Prohibited Items in X-Ray Images Across Complex Scenarios

计算机科学 人工智能 实时计算 计算机视觉
作者
Kaiyuan Zhu,Xinyu Chang,Qing Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb05d
摘要

Abstract Accurate identification of prohibited items in X-ray security images is essential for ensuring public safety. However, current methodologies struggle to simultaneously address irregular deformation, multi-scale features, and background occlusion of prohibited items, leading to inadequate detection accuracy. To address these challenges, we propose an Adaptive Efficient Focusing Network (AEFNet) designed to target regions, thereby enhancing the automatic detection of prohibited items. Specifically, to accommodate the irregular deformation of target regions, we introduce the DACSP module, which dynamically adjusts sampling positions to enhance the network’s adapt ability and focus on occluded targets. For addressing detail loss and managing multi-scale features, we propose the Multi-scale Focus Feature (MFF) module and the Focusing Diffusion Pyramid Network (FDPN), which enable the fusion of semantic and perceptual features, improving use of contextual information at different detection scales. Additionally, detail-enhanced convolution improves the efficacy of feature utilization at different scales, while facilitating a lightweight network design. Finally, we employ the PIoUv2 function to optimize localization loss, resulting in significant performance enhancement. Experimental results show that AEFNet performs effectively across various X-ray security image datasets (PIDray, CLCXray, OPIXray) achieving 74.7%, 61.3%, and 89.2% mAP respectively, and AEFNet also demonstrates strong generalization capabilities on the PASCAL VOC dataset in non-prohibited item detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
1秒前
爱笑冰海完成签到,获得积分10
1秒前
螃螃发布了新的文献求助10
1秒前
宸昶完成签到,获得积分10
2秒前
2秒前
不想看文献关注了科研通微信公众号
3秒前
4秒前
小蘑菇应助zzx采纳,获得10
4秒前
思源应助乙酰胆碱采纳,获得10
4秒前
Christina完成签到,获得积分10
4秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
6秒前
杨老师发布了新的文献求助10
6秒前
6秒前
董是鑫发布了新的文献求助10
6秒前
华志文完成签到,获得积分10
6秒前
英姑应助喜悦的铭采纳,获得10
6秒前
7秒前
zz发布了新的文献求助10
8秒前
科研通AI6应助1+1采纳,获得10
9秒前
科研通AI6应助张耘硕采纳,获得10
9秒前
annaanna发布了新的文献求助10
9秒前
健康的妙菱完成签到,获得积分10
9秒前
10秒前
风中冰香应助nayi采纳,获得10
10秒前
bing发布了新的文献求助10
10秒前
11秒前
蝰蛇发布了新的文献求助10
11秒前
11秒前
黄大大发布了新的文献求助10
11秒前
Julie完成签到,获得积分10
11秒前
12秒前
研友_O8W2PZ发布了新的文献求助10
12秒前
12秒前
无情汉堡完成签到,获得积分10
12秒前
13秒前
顾威发布了新的文献求助10
13秒前
anki完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745