Efficient Swin Transformer for Remote Sensing Image Super-Resolution

计算机视觉 计算机科学 图像分辨率 人工智能 图像处理 遥感 图像分割 图像(数学) 地质学
作者
Xudong Kang,Puhong Duan,Jier Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3489228
摘要

Remote sensing super-resolution (SR) technique, which aims to generate high-resolution image with rich spatial details from its low-resolution counterpart, play a vital role in many applications. Recently, more and more studies attempt to explore the application of Transformer in remote sensing field. However, they suffer from the high computational burden and memory consumption for remote sensing super-resolution. In this paper, we propose an efficient Swin Transformer (ESTNet) via channel attention for SR of remote sensing images, which is composed of three components. First, a three-layer convolutional operation is utilized to extract shallow features of the input low-resolution image. Then, a residual group-wise attention module is proposed to extract the deep features, which contains an efficient channel attention block (ECAB) and a group-wise attention block (GAB). Finally, the extracted deep features are reconstructed to generate high-resolution remote sensing images. Extensive experimental results proclaim that the proposed ESTNet can obtain better super-resolution results with low computational burden. Compared to the recently proposed Transformer-based remote sensing super-resolution method, the number of parameters is reduced by 82.68% while the computational cost is reduced by 87.84%. The code of the proposed ESTNet will be available at https://github.com/PuhongDuan/ESTNet for reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
fal发布了新的文献求助10
5秒前
迈克老狼发布了新的文献求助10
6秒前
6秒前
XXHONG完成签到,获得积分10
6秒前
柠檬要加冰完成签到 ,获得积分10
7秒前
8秒前
11完成签到,获得积分10
9秒前
9秒前
琳琳琳lin发布了新的文献求助10
10秒前
谦让以筠完成签到,获得积分20
10秒前
时遇发布了新的文献求助10
13秒前
wanci应助fal采纳,获得10
13秒前
1212完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
16秒前
yls完成签到,获得积分10
16秒前
16秒前
凌鸣发布了新的文献求助10
16秒前
Sunriseovoo发布了新的文献求助10
17秒前
17秒前
17秒前
chrysophoron应助科研狗采纳,获得10
17秒前
心灵美如豹完成签到,获得积分10
19秒前
21秒前
22秒前
23秒前
26秒前
27秒前
charitial发布了新的文献求助10
28秒前
沈沈完成签到 ,获得积分10
28秒前
29秒前
29秒前
Beatrice完成签到,获得积分10
30秒前
情怀应助琳琳琳lin采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526