Efficient Swin Transformer for Remote Sensing Image Super-Resolution

计算机视觉 计算机科学 图像分辨率 人工智能 图像处理 遥感 图像分割 图像(数学) 地质学
作者
Xudong Kang,Puhong Duan,Jier Li,Shutao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 6367-6379 被引量:21
标识
DOI:10.1109/tip.2024.3489228
摘要

Remote sensing super-resolution (SR) technique, which aims to generate high-resolution image with rich spatial details from its low-resolution counterpart, play a vital role in many applications. Recently, more and more studies attempt to explore the application of Transformer in remote sensing field. However, they suffer from the high computational burden and memory consumption for remote sensing super-resolution. In this paper, we propose an efficient Swin Transformer (ESTNet) via channel attention for SR of remote sensing images, which is composed of three components. First, a three-layer convolutional operation is utilized to extract shallow features of the input low-resolution image. Then, a residual group-wise attention module is proposed to extract the deep features, which contains an efficient channel attention block (ECAB) and a group-wise attention block (GAB). Finally, the extracted deep features are reconstructed to generate high-resolution remote sensing images. Extensive experimental results proclaim that the proposed ESTNet can obtain better super-resolution results with low computational burden. Compared to the recently proposed Transformer-based remote sensing super-resolution method, the number of parameters is reduced by 82.68% while the computational cost is reduced by 87.84%. The code of the proposed ESTNet will be available at https://github.com/PuhongDuan/ESTNet for reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanyuan发布了新的文献求助10
1秒前
1秒前
科研通AI6应助畅快的白枫采纳,获得10
2秒前
乐观黎云发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
大个应助火烧屁屁采纳,获得30
4秒前
4秒前
4秒前
kkjust发布了新的文献求助10
5秒前
Hwj发布了新的文献求助10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
大个应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
8秒前
lkk完成签到,获得积分10
8秒前
酷波er应助JINtian采纳,获得10
9秒前
bkagyin应助王某采纳,获得10
9秒前
NexusExplorer应助单纯的柚子采纳,获得10
11秒前
linlin发布了新的文献求助10
11秒前
11秒前
zsreed关注了科研通微信公众号
11秒前
fyukgfdyifotrf完成签到,获得积分10
11秒前
12秒前
12秒前
满意妙梦发布了新的文献求助10
13秒前
CodeCraft应助PubMed556采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764