自愈水凝胶
材料科学
离子液体
离子键合
纳米技术
化学工程
离子
化学物理
高分子化学
有机化学
催化作用
化学
工程类
标识
DOI:10.1002/adfm.202417688
摘要
Abstract Improving the compatibility between high concentration metallic ions and zwitterions to controllable construction of coordination bonds is critical and extremely challenging. Here, a facile and effective strategy to fabricate multifunctional hydrogels by randomly copolymerizing halometallate ionic liquids (ILs) and zwitterions through electron beam irradiation is reported. Introducing metal ions into ILs can balance charges and establish moderate and stable cross‐linked networks with zwitterions. The synergistic effect of coordination bonds and multiple interactions with varying strengths endows hydrogel with outstanding stretchability, compressive strength, rapid response, advanced self‐healing ability, and excellent frost resistance. The multifunctional sensor assembled from hydrogels can timely, accurately, and stably monitor human movement, write anti‐counterfeiting and remotely transmit Morse code signals. Multiple hydrogel sensors are also assembled into a flexible sensor array to track the tactile trajectory and detect spatial distribution of force. Moreover, the obtained hydrogel displays high temperature sensitivity with resistance temperature coefficient of −3.85% °C −1 at 25–40 °C, which can detect tiny temperature changes (0.1 °C). Interestingly, the processed hydrogel can effectively modulate the transmissivity through salt triggering to achieve patterning. Considering the structural designability of halometallate ILs, this work provides new insights for the development of multifunctional hydrogels.
科研通智能强力驱动
Strongly Powered by AbleSci AI