胶束
结晶
共聚物
侧链
聚合物
化学工程
化学
聚合
高分子化学
结晶度
材料科学
结晶学
有机化学
水溶液
工程类
作者
Xiaoliang Yu,Yuanjian Fang,Zijian Luo,Xing‐Jian Guo,Lulu Fu,Zhi Fan,Jin Zhao,Hongxiang Xie,Minjie Guo,Bowen Cheng
摘要
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates. In this study, a series of all-bottlebrush-type block copolymers, poly(octadecyl acrylate)-block-poly(oligoethylene glycol methyl ether methacrylate)s are prepared by living polymerization. Driven by the synergistic crystallization of crystalline side chains and the rapid microphase separation of bottlebrush topology, these polymers can assemble into uniform 2D circular platelet micelles in a few minutes, without being affected by a high assembly concentration. In this process, epitaxial growth of the bottlebrush molecules proceeds with rigid cylindrical molecular conformation at the micelle crystallization sites and eventually provides a sandwich-type micelle according to a head-to-head stacking mode. This is explained as a "crystallization-assisted rapid microphase separation" mechanism. The micelle structures are affected by the assembly solvent and temperature, the size of which shows a linear dependence on the assembly temperature below the melting point of the crystalline block, which can be used to precisely control the morphology of these 2D platelets. This study establishes an efficient and rapid method to prepare 2D polymer nanosoft materials, which are promising candidates for further development, preparation, and application of various nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI