Abstract Vanadium‐based cathode materials for aqueous zinc‐ion batteries (AZIBs) have attracted much attention in large‐scale energy storage devices yet their unsatisfactory cyclic stability and slow diffusion rate of Zn 2+ ions during insertion and extraction hinder further commercial applications. Therefore, the development of vanadium‐based cathode materials with stable crystal structures and fast Zn 2+ storage remains challenging. Herein, Na 2 CaV 4 O 12 (NCVO) nanowires are reported as a promising cathode of excellent electrochemical performance in AZIBs, simultaneously rendering high specific capacity (443.2 mAh g −1 at 0.1 A g −1 ) and high average voltage plateau (0.91 V) with impressive energy density (403.3 Wh kg −1 ) and power density (1533 W kg −1 ). As NCVO features a unique open crystal structure with alternately arranged inactive layers ([NaO 6 ] and [CaO 8 ] polyhedra) and active layers ([VO 4 ] tetrahedra), the expansion of the [VO 4 ] tetrahedra during Zn 2+ insertion is well balanced by the contraction of the inactive layer, thus enabling remarkable long‐term cycling stability (91.9% and 80% capacity retention after 5000 and 10 000 cycles at 10 A g −1 , respectively). With the electrochromic property of the NCVO cathode, the AZIB can further be used for adaptive camouflage under a range of scenarios, shedding light on the future development of high‐performance cathodes for AZIBs.