Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance

平原的 再生(生物学) 细胞生物学 生物 线粒体融合 干细胞 线粒体分裂 线粒体 基因敲除 细胞命运测定 细胞分化 线粒体DNA 遗传学 基因 转录因子
作者
Xue Pan,Yun Zhao,Yucong Li,Jiajia Chen,Wenya Zhang,Ling Yang,Yuanyi Zhou Xiong,Yuqing Ying,Hao Xu,Yuhong Zhang,Chong Gao,Yuhan Sun,Nan Li,Liangyi Chen,Zhixing Chen,Kai Lei
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41467-024-54720-1
摘要

Tissue regeneration is a complex process involving large changes in cell proliferation, fate determination, and differentiation. Mitochondrial dynamics and metabolism play a crucial role in development and wound repair, but their function in large-scale regeneration remains poorly understood. Planarians offer an excellent model to investigate this process due to their remarkable regenerative abilities. In this study, we examine mitochondrial dynamics during planarian regeneration. We find that knockdown of the mitochondrial fusion gene, opa1, impairs both tissue regeneration and stem cell pluripotency. Interestingly, the regeneration defects caused by opa1 knockdown are rescued by simultaneous knockdown of the mitochondrial fission gene, drp1, which partially restores mitochondrial dynamics. Furthermore, we discover that Mitolow stem cells exhibit an enrichment of pluripotency due to their fate choices at earlier stages. Transcriptomic analysis reveals the delicate mitonuclear balance in metabolism and mitochondrial proteins in regeneration, controlled by mitochondrial dynamics. These findings highlight the importance of maintaining mitochondrial dynamics in large-scale tissue regeneration and suggest the potential for manipulating these dynamics to enhance stem cell functionality and regenerative processes. Mitochondrial dynamics in large-scale regeneration remain poorly understood. Here they show that the mitochondrial fusion-fission equilibrium can determine the pluripotency of planarian stem cells and that mitonuclear balance is critical for planarian regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHOU-XY完成签到 ,获得积分10
1秒前
菠萝李发布了新的文献求助10
1秒前
2秒前
千万雷同发布了新的文献求助10
3秒前
小杨杨完成签到,获得积分10
4秒前
4秒前
啾咕完成签到,获得积分10
5秒前
木南发布了新的文献求助10
5秒前
5秒前
森源发布了新的文献求助10
6秒前
6秒前
随影完成签到 ,获得积分10
6秒前
6秒前
6秒前
爆米花应助单纯的思松采纳,获得10
6秒前
呀ya发布了新的文献求助10
6秒前
两袖清风发布了新的文献求助10
7秒前
wt完成签到 ,获得积分10
8秒前
调皮的达完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
战善完成签到,获得积分10
10秒前
随影关注了科研通微信公众号
10秒前
二小发布了新的文献求助10
10秒前
大琦发布了新的文献求助10
10秒前
彭于晏应助积极太清采纳,获得10
11秒前
Nana2021完成签到,获得积分10
11秒前
千万雷同完成签到,获得积分10
11秒前
健忘的念蕾完成签到,获得积分10
12秒前
毛豆应助歪比巴啵采纳,获得10
13秒前
林登万发布了新的文献求助10
14秒前
搜集达人应助123456采纳,获得10
14秒前
15秒前
杰青发布了新的文献求助10
15秒前
15秒前
乔木完成签到 ,获得积分10
16秒前
tdtk发布了新的文献求助10
16秒前
汉堡包应助漂亮的雅容采纳,获得10
17秒前
朵拉A梦完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325