推进剂
材料科学
化学工程
碳纤维
图层(电子)
聚四氟乙烯
沉积(地质)
氧化物
燃烧
惰性
反应性(心理学)
氟
复合材料
化学
冶金
有机化学
复合数
医学
替代医学
病理
工程类
古生物学
沉积物
生物
作者
Ting Liu,Cui Nie,Yaofeng Mao,Yu Zhang,Gang Li,Fude Nie,Jun Wang,Jie Chen
出处
期刊:Small
[Wiley]
日期:2025-01-26
被引量:1
标识
DOI:10.1002/smll.202410377
摘要
Abstract The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (Al 2 O 3 ). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi‐like Al/PTFE fuel with the nano‐PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the Al 2 O 3 layer and carbon deposition. This unique PTFE‐coated structure can achieve localized activation of Al by surface etching, creating reaction channels, and exposing the active Al. Such a channel network promotes the circulation of fluorine and oxygen, stimulating the synergistic reactions of Al‐F and Al‐O and energy output. Regulating the PTFE content can maximize the elimination of carbon deposition and achieve the full combustion reaction of Al/PTFE. The maximum flame area and pressure output of the litchi‐like Al/PTFE fuel increased by 241.9%, 734.7%, 118.4%, and 265.2%, respectively, compared with traditional physical mixture and core‐shell structure Al/PTFE fuels. The localized activation and synergistic effects of litchi‐like structure effectively transform carbon waste into a valuable resource, introducing a novel approach for the propellants.
科研通智能强力驱动
Strongly Powered by AbleSci AI