Genomic prediction accounting for dominance and epistatic genetic effects on litter size traits in Large White pigs

上位性 最佳线性无偏预测 生物 优势(遗传学) 垃圾箱 混合模型 加性遗传效应 遗传力 遗传模型 遗传学 基因组选择 选择(遗传算法) 统计 动物科学 基因型 数学 基因 生态学 计算机科学 人工智能 单核苷酸多态性
作者
Jianmei Chen,Tengfei Dou,Ziyi Wu,Liyao Bai,Man Xu,Zhang Yong-qian,Songbai Yang,Shiqian Xu,Xuelei Han,Ruimin Qiao,Kejun Wang,Feng Yang,Xinjian Li,Xianwei Wang,Xiuling Li
出处
期刊:Journal of Animal Science [Oxford University Press]
标识
DOI:10.1093/jas/skaf004
摘要

Abstract Litter size traits of sows are crucial for the economic benefits of the pig industry. Three phenotypic traits of 1,206 Large White (LW) pigs, that is, the total number born (TNB), number born alive (NBA), and number of healthy piglets (NHP), were recorded. We evaluated a series of genomic best linear unbiased prediction (GBLUP) models that sequentially added additive effects (model A), dominance effects (model A+D), and epistatic effects (model A+D+AA, model A+D+AA+AD, and model A+D+AA+AD+DD) using chip data and imputed whole-genome sequencing (WGS) data to estimate genetic parameters and predictive accuracy. The reproductive traits of sows showed low heritability in this study, with narrow heritability of the three traits ranging from 0.030 to 0.064, and broad heritability ranging from 0.125 to 0.145. The inclusion of non-additive effects in the model improved the accuracy of genomic selection. In the chip data, compared with that of the A model, the A+D+AA+AD+DD model showed the greatest increase in accuracy for TNB, NBA, and NHP, with improvements of 1.78, 1.67, and 1.74%, respectively. Additionally, the accuracy of the imputed WGS data was greater compared to the chip data. For the TNB, NBA, and NHP traits, the predictive accuracy of the imputed WGS data improved by 3.26, 7.72, and 3.00%, respectively, compared with that of the chip data. In summary, these results suggest that non-additive effects in genomic selection could improve prediction accuracy and should be considered in pig genomic evaluation procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助100
3秒前
pass发布了新的文献求助10
3秒前
CAOHOU给科研hub通的求助进行了留言
4秒前
quhayley应助笑笑采纳,获得10
6秒前
打工肥仔应助NL14D采纳,获得10
6秒前
asdfqwer应助NL14D采纳,获得10
6秒前
asdfqwer应助NL14D采纳,获得10
6秒前
inkkk完成签到,获得积分20
9秒前
轻松绿旋完成签到,获得积分10
11秒前
胡1111完成签到 ,获得积分10
12秒前
酷波er应助百里健柏采纳,获得10
12秒前
汉堡包应助沐秋采纳,获得10
13秒前
14秒前
wu8577应助科研通管家采纳,获得10
15秒前
wu8577应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
田様应助ggy采纳,获得10
17秒前
英俊的铭应助倩迷谜采纳,获得10
18秒前
Dreamsli完成签到,获得积分10
18秒前
aldehyde应助油糕饵块采纳,获得10
18秒前
冷傲凝琴发布了新的文献求助10
19秒前
深情安青应助ZhengShuting采纳,获得30
20秒前
21秒前
zh发布了新的文献求助10
21秒前
在水一方应助定格采纳,获得10
22秒前
kangsynat完成签到 ,获得积分10
23秒前
25秒前
沐秋发布了新的文献求助10
26秒前
艾玛关注了科研通微信公众号
27秒前
28秒前
Yuanyuan发布了新的文献求助10
29秒前
定格完成签到,获得积分20
33秒前
33秒前
yongzaizhuigan完成签到,获得积分10
34秒前
One发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382