共聚物
电解质
氰基丙烯酸酯
电池(电)
金属锂
锂(药物)
锂电池
材料科学
聚合物
金属
高分子化学
化学工程
化学
有机化学
胶粘剂
纳米技术
工程类
复合材料
离子
离子键合
冶金
电极
医学
物理化学
内分泌学
功率(物理)
图层(电子)
量子力学
物理
作者
Weixing Min,Lengwan Li,Mingli Wang,Shuaijiang Ma,Hao Feng,Weirong Wang,Hang Ding,Ta‐Chih Cheng,Zhenxi Li,Tomonori Saito,Huabin Yang,Pengfei Cao
标识
DOI:10.1002/anie.202422510
摘要
Polymers with strong electron‐withdrawing groups (e.g., cyano‐containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability. However, the polymerization of such monomers is difficult to control with trace of water affording instant reactions, and copolymerization with other monomers without using strong acid is even more challenging. The present study demonstrates a facile approach enabling efficient and controllable copolymerization of ethyl cyanoacrylate (ECA) without adding undesired additives, achieving mechanically robust and high ion‐conduction gel polymer electrolyte (GPE) for safe and long cycle‐life lithium‐metal batteries (LMBs). The incorporated dual‐lithium salts, i.e., lithium difluoro(oxalato)borate (LiDFOB) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) not only facilitate radical polymerization of ECA monomers by suppressing their anionic polymerization, but also promote the formation of high‐ionic conducting GPE. The incorporated methyl methacrylate (MMA) monomer accelerates the radical polymerization of ECA (confirmed by DFT calculations), achieving controlled copolymerization of ECA‐based copolymers. The mechanically robust polymer network made by the ECA copolymer enables LMBs with both LFP cathodes and high‐voltage LCO cathodes (4.5 V) operatable at different temperatures with ultra‐long cycle life at 1 C (capacity retention of 81.1% and 83.8%, respectively, over 1000 cycles).
科研通智能强力驱动
Strongly Powered by AbleSci AI