水准点(测量)
深度学习
地震学
计算机科学
地震记录
机器学习
数据挖掘
地质学
大地测量学
作者
K.S. Tang,Kuan-Yu Chen,Da-Yi Chen,Tai-Lin Chin,Ting‐Yu Hsu
摘要
Abstract In recent years, numerous studies have employed deep learning in seismology, with data-driven neural network models increasingly becoming the norm in emerging research paradigms. Alongside advancements in model architectures, several benchmark datasets have also been introduced. However, many of these datasets suffer from imbalanced distributions, particularly a scarcity of large-magnitude events, which can impair the performance of deep learning-based models. Taiwan, situated in a seismically active region experiences a high frequency of earthquakes annually. The Central Weather Administration (CWA) in Taiwan maintains comprehensive records of these seismic events. This study introduces a benchmark dataset, named CWA, specifically compiled from this extensive database. The CWA benchmark includes 331 events with magnitudes greater than five, collected from a high-density seismic network spanning from 2011 to 2021, making it well-suited for training deep learning models. In addition, the CWA benchmark features over 40 attributes and ∼500,000 seismograms, providing valuable data labels for various seismology-related tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI