Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
最佳完成签到,获得积分10
刚刚
1秒前
3秒前
Owen应助Brot_12采纳,获得30
3秒前
4秒前
研友_VZG7GZ应助那年的伟哥采纳,获得10
4秒前
wanci应助蝌蚪采纳,获得10
5秒前
传统的纸飞机完成签到 ,获得积分10
6秒前
徐洋发布了新的文献求助10
6秒前
玖Nine发布了新的文献求助10
6秒前
畅快慕蕊发布了新的文献求助10
8秒前
8秒前
balabala发布了新的文献求助10
9秒前
10秒前
李健的小迷弟应助TJJ采纳,获得10
11秒前
11秒前
Orange应助最佳采纳,获得10
11秒前
小天狼星完成签到,获得积分10
12秒前
梧桐完成签到,获得积分10
16秒前
18秒前
kgf发布了新的文献求助10
18秒前
李健应助小DRA采纳,获得10
21秒前
量子星尘发布了新的文献求助10
24秒前
文静煜城完成签到 ,获得积分10
26秒前
Liufgui应助橘子采纳,获得20
27秒前
大秦完成签到,获得积分10
30秒前
NexusExplorer应助徐洋采纳,获得10
30秒前
34秒前
35秒前
积极的沂完成签到,获得积分10
37秒前
大个应助好想睡大觉采纳,获得10
38秒前
小郭子发布了新的文献求助10
38秒前
Mr.Jian完成签到,获得积分10
39秒前
素简发布了新的文献求助10
40秒前
博修发布了新的文献求助10
41秒前
42秒前
众筹昵称完成签到,获得积分10
44秒前
正好完成签到,获得积分10
46秒前
TJJ发布了新的文献求助10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167