Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao12wang完成签到,获得积分10
刚刚
刚刚
你你你完成签到,获得积分10
1秒前
1秒前
battle王完成签到,获得积分10
1秒前
2秒前
2秒前
豆包糊了发布了新的文献求助10
2秒前
孙亦沈完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
研友_VZG7GZ应助wendy采纳,获得10
3秒前
5秒前
无数遍离开完成签到,获得积分10
5秒前
5秒前
星星发布了新的文献求助10
5秒前
科研通AI6.1应助冷酷曼卉采纳,获得10
5秒前
阳子发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
Hstatic完成签到 ,获得积分10
7秒前
秦霄贤老婆完成签到,获得积分10
7秒前
SCI发布了新的文献求助50
7秒前
7秒前
8秒前
8秒前
心旷神怡发布了新的文献求助10
8秒前
SciGPT应助23采纳,获得10
8秒前
容棋完成签到,获得积分10
8秒前
丘比特应助三重根采纳,获得10
8秒前
SciGPT应助细腻心锁采纳,获得10
9秒前
9秒前
阿航发布了新的文献求助10
9秒前
lingli发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
情怀应助木炭采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750645
求助须知:如何正确求助?哪些是违规求助? 5464898
关于积分的说明 15367334
捐赠科研通 4889553
什么是DOI,文献DOI怎么找? 2629305
邀请新用户注册赠送积分活动 1577613
关于科研通互助平台的介绍 1534037