Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小尚完成签到,获得积分10
刚刚
小小咸鱼完成签到 ,获得积分10
1秒前
summer完成签到,获得积分10
1秒前
1秒前
Frank完成签到,获得积分10
2秒前
Criminology34发布了新的文献求助300
3秒前
嘿嘿应助乾澪怀新采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
happy星发布了新的文献求助10
6秒前
Boro发布了新的文献求助10
6秒前
7秒前
之_ZH完成签到 ,获得积分10
8秒前
xingyi完成签到,获得积分10
8秒前
无所忌惮的玫瑰果完成签到,获得积分10
9秒前
平贝花应助mtfx采纳,获得10
9秒前
嘴巴张大一点完成签到,获得积分10
9秒前
qigu完成签到,获得积分10
9秒前
包容的垣完成签到,获得积分10
9秒前
9秒前
heqiancan完成签到,获得积分10
10秒前
smofan发布了新的文献求助10
10秒前
草莓星完成签到,获得积分10
11秒前
12秒前
千树怜完成签到,获得积分20
12秒前
辛勤白玉发布了新的文献求助10
13秒前
andrewliu发布了新的文献求助10
14秒前
孟梦发布了新的文献求助10
14秒前
Orange应助Enkcy采纳,获得10
14秒前
小蘑菇应助SHAHc采纳,获得10
15秒前
15秒前
hyperle完成签到,获得积分10
15秒前
隐形的乐枫完成签到,获得积分10
15秒前
16秒前
蓝天发布了新的文献求助20
18秒前
田様应助粉红色的小花卷采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
21秒前
Depeng完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176