Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
染墨绘梨衣完成签到,获得积分10
刚刚
刚刚
nggs发布了新的文献求助10
1秒前
Kang完成签到,获得积分10
1秒前
星星发布了新的文献求助10
1秒前
sunny完成签到 ,获得积分10
1秒前
2秒前
华仔应助安静从筠采纳,获得10
2秒前
炖地瓜完成签到 ,获得积分10
2秒前
NexusExplorer应助qq大魔王采纳,获得10
2秒前
gy完成签到 ,获得积分10
2秒前
xin完成签到 ,获得积分10
3秒前
隐形曼青应助小c采纳,获得10
3秒前
脑洞疼应助susu采纳,获得10
4秒前
suye发布了新的文献求助10
5秒前
碧蓝破茧发布了新的文献求助10
6秒前
swg完成签到,获得积分10
6秒前
6秒前
顾矜应助Sunhignway采纳,获得10
7秒前
搜集达人应助CC采纳,获得10
7秒前
36456657应助研友_LN7x6n采纳,获得10
7秒前
浮游应助自信寻云采纳,获得10
7秒前
xh发布了新的文献求助10
7秒前
Xiaoduoyu完成签到,获得积分10
8秒前
10秒前
小确幸完成签到,获得积分10
10秒前
个性的紫菜应助niobelynn采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
科研通AI6应助Xiaoduoyu采纳,获得10
12秒前
12秒前
Owen应助自觉从筠采纳,获得10
13秒前
桐桐应助qq大魔王采纳,获得10
13秒前
13秒前
14秒前
闲云野鹤完成签到,获得积分10
14秒前
14秒前
可爱的函函应助耶耶采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490