Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
LL完成签到,获得积分10
3秒前
情怀应助闵不悔采纳,获得10
3秒前
夜包子123完成签到,获得积分10
3秒前
肥鱼完成签到,获得积分10
4秒前
5秒前
偏偏意气用事完成签到,获得积分10
6秒前
6秒前
郭志倩发布了新的文献求助10
6秒前
八二力完成签到 ,获得积分10
7秒前
蓝桉发布了新的文献求助10
7秒前
9秒前
丹尼完成签到 ,获得积分10
9秒前
明研完成签到,获得积分10
10秒前
拼搏冬瓜完成签到,获得积分10
10秒前
11秒前
兜里面有怪兽完成签到,获得积分10
13秒前
13秒前
14秒前
yongjie发布了新的文献求助30
14秒前
15秒前
Pzuzu完成签到 ,获得积分10
15秒前
15秒前
HUOZHUANGCHAO完成签到,获得积分10
15秒前
16秒前
大个应助小杨采纳,获得10
17秒前
欢欢欢乐乐乐乐完成签到,获得积分10
17秒前
19秒前
土豪的紫荷完成签到 ,获得积分10
19秒前
卷卷发布了新的文献求助10
20秒前
20秒前
闵不悔发布了新的文献求助10
20秒前
哇晒完成签到,获得积分10
21秒前
pluto应助听雨采纳,获得10
21秒前
小猴子完成签到 ,获得积分10
23秒前
yongjie完成签到,获得积分10
23秒前
威武皮带完成签到,获得积分10
23秒前
哭泣鼠标完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037