重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助幸运儿比克斯采纳,获得30
1秒前
1秒前
1秒前
ybdst完成签到,获得积分10
1秒前
迷路的指甲油完成签到,获得积分10
2秒前
778完成签到,获得积分10
2秒前
费费发布了新的文献求助10
2秒前
小蘑菇应助Gfi采纳,获得10
2秒前
luria发布了新的文献求助10
2秒前
无为发布了新的文献求助10
2秒前
momomomo123完成签到,获得积分10
2秒前
客服小祥发布了新的文献求助10
3秒前
脑壳疼发布了新的文献求助10
3秒前
穆穆穆发布了新的文献求助10
3秒前
4秒前
jia发布了新的文献求助10
4秒前
文献孙完成签到,获得积分10
4秒前
4秒前
怡然的芯完成签到,获得积分10
4秒前
4秒前
Owen应助雪晴采纳,获得10
4秒前
abib完成签到,获得积分10
4秒前
伊伊发布了新的文献求助10
4秒前
田様应助Ldq采纳,获得10
5秒前
科研通AI6应助Ldq采纳,获得100
5秒前
酷波er应助Ldq采纳,获得10
5秒前
liangzai发布了新的文献求助10
5秒前
sk发布了新的文献求助10
5秒前
啊七飞完成签到,获得积分10
5秒前
刘汉淼完成签到,获得积分10
5秒前
watgos应助积极新筠采纳,获得10
5秒前
wangqianyu完成签到,获得积分10
5秒前
5秒前
研友_Zrl2pL完成签到,获得积分20
5秒前
小二郎应助eternal采纳,获得10
6秒前
一只木碗123完成签到 ,获得积分10
6秒前
小白完成签到,获得积分10
6秒前
腿毛怪完成签到,获得积分10
6秒前
yhexie发布了新的文献求助30
6秒前
skf完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590