Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一修完成签到,获得积分20
1秒前
千纸鹤完成签到 ,获得积分10
1秒前
YWR完成签到,获得积分10
2秒前
2秒前
西伯侯发布了新的文献求助10
2秒前
朴实初夏发布了新的文献求助10
2秒前
鹏826发布了新的文献求助10
4秒前
5秒前
漂亮白枫完成签到,获得积分20
5秒前
keep1997发布了新的文献求助10
7秒前
完美世界应助西伯侯采纳,获得10
8秒前
所以完成签到,获得积分10
9秒前
小胖发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
cherry bomb完成签到 ,获得积分10
14秒前
zzz发布了新的文献求助10
15秒前
YH2完成签到,获得积分10
15秒前
18秒前
18秒前
18秒前
iiiorange发布了新的文献求助20
18秒前
彭于晏应助ctc采纳,获得10
18秒前
Crazy_Runner发布了新的文献求助10
19秒前
wjn完成签到,获得积分10
20秒前
糊涂的凡发布了新的文献求助10
21秒前
1234发布了新的文献求助10
22秒前
mayday完成签到,获得积分10
22秒前
漂亮白枫发布了新的文献求助10
22秒前
人间烟火发布了新的文献求助10
22秒前
壮观以松完成签到,获得积分20
23秒前
NexusExplorer应助zzz采纳,获得10
23秒前
23秒前
克己复礼发布了新的文献求助10
24秒前
yh123完成签到,获得积分10
27秒前
永远爱刻晴完成签到 ,获得积分10
27秒前
28秒前
SciGPT应助西伯侯采纳,获得10
29秒前
深情安青应助板凳采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299726
求助须知:如何正确求助?哪些是违规求助? 2934627
关于积分的说明 8469883
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424065
科研通“疑难数据库(出版商)”最低求助积分说明 661818
邀请新用户注册赠送积分活动 645574