已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zl13332完成签到 ,获得积分10
刚刚
肥肠的枣糕啊完成签到,获得积分10
3秒前
小小发布了新的文献求助30
3秒前
4秒前
5秒前
6秒前
fedehe完成签到 ,获得积分10
6秒前
YifanWang应助潇潇雨歇采纳,获得10
8秒前
ZhouLin发布了新的文献求助10
8秒前
双眼皮跳蚤完成签到,获得积分0
11秒前
善学以致用应助Augustines采纳,获得10
18秒前
Mark完成签到 ,获得积分10
18秒前
ZhouLin完成签到,获得积分10
18秒前
hvu完成签到,获得积分10
19秒前
朴素海亦完成签到 ,获得积分10
23秒前
fsznc完成签到 ,获得积分0
24秒前
24秒前
为什么这篇文献又没有完成签到,获得积分10
27秒前
Lucas应助寰2023采纳,获得10
27秒前
william完成签到 ,获得积分10
29秒前
疯狂的娃哈哈完成签到 ,获得积分10
31秒前
儒雅完成签到 ,获得积分10
31秒前
土豪的摩托完成签到 ,获得积分10
33秒前
34秒前
AZN完成签到,获得积分10
34秒前
YifanWang应助潇潇雨歇采纳,获得10
35秒前
科研通AI6应助聪明怜阳采纳,获得10
36秒前
36秒前
辣椒完成签到 ,获得积分10
39秒前
40秒前
刘雨森完成签到 ,获得积分10
42秒前
45秒前
47秒前
Tian完成签到,获得积分10
48秒前
科研小新发布了新的文献求助10
51秒前
小巧亦竹完成签到,获得积分10
52秒前
科研通AI6应助Tian采纳,获得10
52秒前
56秒前
TL完成签到,获得积分10
57秒前
Rina完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576