Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泽哥完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研通AI2S应助温衡的言希采纳,获得10
2秒前
研友_nv4Bx8完成签到,获得积分10
2秒前
2秒前
wy.he应助虚幻元风采纳,获得30
3秒前
4秒前
qqq发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
Zhjie126完成签到,获得积分10
4秒前
5秒前
黄老牛发布了新的文献求助10
5秒前
linkinparkcs发布了新的文献求助10
5秒前
doo完成签到,获得积分10
5秒前
JamesPei应助优秀的枕头采纳,获得10
6秒前
6秒前
处处吻完成签到 ,获得积分10
6秒前
鲸鱼发布了新的文献求助10
6秒前
爆米花应助昏睡的万恶采纳,获得30
9秒前
十一发布了新的文献求助10
9秒前
9秒前
英姑应助卷卷采纳,获得10
9秒前
在水一方应助断章采纳,获得10
9秒前
10秒前
伴佰发布了新的文献求助10
10秒前
丘比特应助每天都火大采纳,获得10
10秒前
热心市民小红花应助沐飒采纳,获得30
10秒前
YUuuu完成签到,获得积分10
11秒前
zero完成签到,获得积分10
11秒前
Gu完成签到,获得积分10
11秒前
Dxy-TOFA发布了新的文献求助10
11秒前
科研通AI5应助从此采纳,获得10
12秒前
科研通AI5应助kai150333429采纳,获得10
12秒前
科研通AI2S应助蒸芋芋了采纳,获得10
13秒前
爆米花应助fenghy采纳,获得10
13秒前
诚心仰发布了新的文献求助30
14秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029