亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Next-visit prediction and prevention of hypertension using large-scale routine health checkup data

体质指数 医学 预测建模 比例(比率) 弗雷明翰风险评分 人工智能 机器学习 试验装置 计算机科学 统计 数学 内科学 量子力学 物理 疾病
作者
Chung-Che Wang,Ta-Wei Chu,Jyh‐Shing Roger Jang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0313658-e0313658
标识
DOI:10.1371/journal.pone.0313658
摘要

This paper proposes the use of machine learning models to predict one's risk of having hypertension in the future using their routine health checkup data of their current and past visits to a health checkup center. The large-scale and high-dimensional dataset used in this study comes from MJ Health Research Foundation in Taiwan. The training data for models is separated into 5 folds and used to train 5 models in a 5-fold cross validation manner. While predicting the results for the test set, the voted result of 5 models is used as the final prediction. Experimental results show that our models achieve 69.59% of precision, 77.90% of recall, and 73.51% of F1-score, which outperforms a baseline using only the blood pressure of visitors' last visits. Experiments also show that a visitor who performs a health checkup more often can be predicted better, and models trained with selected important factors achieve better results than those trained with Framingham risk score. We also demonstrate the possibility of using our models to suggest visitors for weight control by adding virtual visits that assume their body weight can be reduced in the near future to model input. Experimental results show that around 5.48% of the people who are with high Body Mass Index of the true positive cases are rejudged as negative, and a rising trend appears when adding more virtual visits, which may be used to suggest visitors that controlling their body weight for a longer time lead to lower probability of having hypertension in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明芬发布了新的文献求助10
1秒前
ceeray23应助科研通管家采纳,获得10
10秒前
ceeray23应助科研通管家采纳,获得10
11秒前
31秒前
36秒前
GU完成签到,获得积分10
43秒前
57秒前
炙热的雪糕完成签到,获得积分10
1分钟前
Zyy发布了新的文献求助20
1分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
大个应助明芬采纳,获得10
2分钟前
2分钟前
南寅完成签到,获得积分10
2分钟前
852应助ceeray23采纳,获得20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Owen应助ceeray23采纳,获得20
3分钟前
黄老牛完成签到 ,获得积分10
3分钟前
无极微光应助Zyy采纳,获得20
3分钟前
大模型应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
余念安完成签到 ,获得积分10
4分钟前
9999发布了新的文献求助10
4分钟前
sea完成签到 ,获得积分10
4分钟前
ceeray23发布了新的文献求助20
4分钟前
4分钟前
明芬发布了新的文献求助10
5分钟前
hx完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
明芬发布了新的文献求助10
5分钟前
臭小子发布了新的文献求助10
5分钟前
臭小子完成签到,获得积分10
5分钟前
blenx完成签到,获得积分10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
我是老大应助科研通管家采纳,获得50
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945