已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Next-visit prediction and prevention of hypertension using large-scale routine health checkup data

体质指数 医学 预测建模 比例(比率) 弗雷明翰风险评分 人工智能 机器学习 试验装置 计算机科学 统计 数学 内科学 量子力学 物理 疾病
作者
Chung-Che Wang,Ta-Wei Chu,Jyh‐Shing Roger Jang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0313658-e0313658
标识
DOI:10.1371/journal.pone.0313658
摘要

This paper proposes the use of machine learning models to predict one's risk of having hypertension in the future using their routine health checkup data of their current and past visits to a health checkup center. The large-scale and high-dimensional dataset used in this study comes from MJ Health Research Foundation in Taiwan. The training data for models is separated into 5 folds and used to train 5 models in a 5-fold cross validation manner. While predicting the results for the test set, the voted result of 5 models is used as the final prediction. Experimental results show that our models achieve 69.59% of precision, 77.90% of recall, and 73.51% of F1-score, which outperforms a baseline using only the blood pressure of visitors' last visits. Experiments also show that a visitor who performs a health checkup more often can be predicted better, and models trained with selected important factors achieve better results than those trained with Framingham risk score. We also demonstrate the possibility of using our models to suggest visitors for weight control by adding virtual visits that assume their body weight can be reduced in the near future to model input. Experimental results show that around 5.48% of the people who are with high Body Mass Index of the true positive cases are rejudged as negative, and a rising trend appears when adding more virtual visits, which may be used to suggest visitors that controlling their body weight for a longer time lead to lower probability of having hypertension in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mos2发布了新的文献求助20
1秒前
芊芊发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助科研狗采纳,获得10
4秒前
Jenny发布了新的文献求助10
4秒前
6秒前
Lhahaha完成签到 ,获得积分10
6秒前
long完成签到 ,获得积分10
6秒前
大个应助keyanning采纳,获得10
7秒前
9秒前
9秒前
Evilw1an完成签到 ,获得积分10
9秒前
kiyoshi发布了新的文献求助40
10秒前
10秒前
Robert发布了新的文献求助10
12秒前
12秒前
星辰大海应助Lorain采纳,获得10
14秒前
15秒前
李国铭发布了新的文献求助10
15秒前
16秒前
obito发布了新的文献求助10
16秒前
小二郎应助kangkang采纳,获得10
18秒前
yuanshuai发布了新的文献求助10
20秒前
20秒前
木子发布了新的文献求助10
21秒前
22秒前
24秒前
24秒前
limingming完成签到,获得积分10
24秒前
qzdy发布了新的文献求助10
25秒前
复杂的皮卡丘完成签到,获得积分10
25秒前
梓雨发布了新的文献求助10
27秒前
27秒前
章赛完成签到,获得积分10
30秒前
30秒前
31秒前
Ava应助李国铭采纳,获得30
31秒前
吴彦祖应助sushi采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263