Next-visit prediction and prevention of hypertension using large-scale routine health checkup data

体质指数 医学 预测建模 比例(比率) 弗雷明翰风险评分 人工智能 机器学习 试验装置 计算机科学 统计 数学 内科学 物理 疾病 量子力学
作者
Chung-Che Wang,Ta-Wei Chu,Jyh‐Shing Roger Jang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0313658-e0313658
标识
DOI:10.1371/journal.pone.0313658
摘要

This paper proposes the use of machine learning models to predict one's risk of having hypertension in the future using their routine health checkup data of their current and past visits to a health checkup center. The large-scale and high-dimensional dataset used in this study comes from MJ Health Research Foundation in Taiwan. The training data for models is separated into 5 folds and used to train 5 models in a 5-fold cross validation manner. While predicting the results for the test set, the voted result of 5 models is used as the final prediction. Experimental results show that our models achieve 69.59% of precision, 77.90% of recall, and 73.51% of F1-score, which outperforms a baseline using only the blood pressure of visitors' last visits. Experiments also show that a visitor who performs a health checkup more often can be predicted better, and models trained with selected important factors achieve better results than those trained with Framingham risk score. We also demonstrate the possibility of using our models to suggest visitors for weight control by adding virtual visits that assume their body weight can be reduced in the near future to model input. Experimental results show that around 5.48% of the people who are with high Body Mass Index of the true positive cases are rejudged as negative, and a rising trend appears when adding more virtual visits, which may be used to suggest visitors that controlling their body weight for a longer time lead to lower probability of having hypertension in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的小李完成签到 ,获得积分10
刚刚
1秒前
小蘑菇应助TOMMY233采纳,获得10
2秒前
迟雨烟暮发布了新的文献求助20
2秒前
3秒前
无花果应助pantutu采纳,获得10
3秒前
雪山飞狐发布了新的文献求助10
5秒前
香蕉君达发布了新的文献求助200
6秒前
Russula_Chu应助沉默天抒采纳,获得10
6秒前
852应助上官枫采纳,获得10
6秒前
yujian发布了新的文献求助10
6秒前
6秒前
lf完成签到,获得积分10
6秒前
科研通AI2S应助阿伟采纳,获得10
7秒前
桐桐应助ZZDXXX采纳,获得10
7秒前
7秒前
7秒前
9秒前
睡觉大王完成签到 ,获得积分10
9秒前
炙热芷蕊完成签到,获得积分10
10秒前
liuyu完成签到,获得积分10
10秒前
10秒前
11秒前
小廖发布了新的文献求助10
11秒前
冷酷凝芙完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
雪山飞狐完成签到,获得积分10
13秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
13秒前
13秒前
充电宝应助acuter采纳,获得10
14秒前
liuyu发布了新的文献求助10
14秒前
李爱国应助坚强雅绿采纳,获得10
15秒前
15秒前
xy发布了新的文献求助10
16秒前
pantutu发布了新的文献求助10
17秒前
李li发布了新的文献求助10
17秒前
ZZDXXX发布了新的文献求助10
18秒前
Accompany发布了新的文献求助10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760155
求助须知:如何正确求助?哪些是违规求助? 3303422
关于积分的说明 10126316
捐赠科研通 3017709
什么是DOI,文献DOI怎么找? 1657163
邀请新用户注册赠送积分活动 791069
科研通“疑难数据库(出版商)”最低求助积分说明 754142