Next-visit prediction and prevention of hypertension using large-scale routine health checkup data

体质指数 医学 预测建模 比例(比率) 弗雷明翰风险评分 人工智能 机器学习 试验装置 计算机科学 统计 数学 内科学 量子力学 物理 疾病
作者
Chung-Che Wang,Ta-Wei Chu,Jyh‐Shing Roger Jang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0313658-e0313658
标识
DOI:10.1371/journal.pone.0313658
摘要

This paper proposes the use of machine learning models to predict one's risk of having hypertension in the future using their routine health checkup data of their current and past visits to a health checkup center. The large-scale and high-dimensional dataset used in this study comes from MJ Health Research Foundation in Taiwan. The training data for models is separated into 5 folds and used to train 5 models in a 5-fold cross validation manner. While predicting the results for the test set, the voted result of 5 models is used as the final prediction. Experimental results show that our models achieve 69.59% of precision, 77.90% of recall, and 73.51% of F1-score, which outperforms a baseline using only the blood pressure of visitors' last visits. Experiments also show that a visitor who performs a health checkup more often can be predicted better, and models trained with selected important factors achieve better results than those trained with Framingham risk score. We also demonstrate the possibility of using our models to suggest visitors for weight control by adding virtual visits that assume their body weight can be reduced in the near future to model input. Experimental results show that around 5.48% of the people who are with high Body Mass Index of the true positive cases are rejudged as negative, and a rising trend appears when adding more virtual visits, which may be used to suggest visitors that controlling their body weight for a longer time lead to lower probability of having hypertension in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助聪明眼睛采纳,获得10
刚刚
刚刚
开心诗珊完成签到,获得积分10
1秒前
蛋妞儿完成签到,获得积分10
1秒前
东木应助狗狗茶采纳,获得30
1秒前
小蚊子发布了新的文献求助10
1秒前
CipherSage应助哭泣代容采纳,获得10
2秒前
要开心完成签到,获得积分10
2秒前
丘比特应助顺心的翠丝采纳,获得10
2秒前
fu发布了新的文献求助10
2秒前
2秒前
小马甲应助小爱采纳,获得10
2秒前
霍笑白发布了新的文献求助10
3秒前
王嘉文完成签到 ,获得积分20
3秒前
刘子迪完成签到,获得积分10
4秒前
clyhg完成签到,获得积分10
4秒前
chenzi完成签到 ,获得积分10
5秒前
俏皮芹完成签到,获得积分10
5秒前
5秒前
you发布了新的文献求助10
5秒前
微光关注了科研通微信公众号
6秒前
6秒前
Sunziy完成签到,获得积分10
7秒前
坨子完成签到,获得积分10
7秒前
不安青牛发布了新的文献求助10
7秒前
梦醒时见你完成签到,获得积分10
7秒前
水水完成签到,获得积分10
8秒前
文静千凡完成签到,获得积分10
8秒前
illusion完成签到,获得积分10
8秒前
聪慧尔白完成签到,获得积分10
9秒前
9秒前
罗山柳完成签到,获得积分10
10秒前
10秒前
666发布了新的文献求助10
10秒前
希望天下0贩的0应助handan采纳,获得10
11秒前
yx_cheng应助Flipped采纳,获得10
11秒前
11秒前
小赵发布了新的文献求助10
11秒前
12秒前
new发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301