Fine‐tuning of artificial intelligence managers' logic in a supply chain with competing retailers

供应链 产业组织 业务 供应链管理 计算机科学 链条(单位) 运筹学 人工智能 营销 数学 物理 天文
作者
Yue Li,Ruiqing Zhao,Xiang Li,Tsan‐Ming Choi
出处
期刊:Decision Sciences [Wiley]
标识
DOI:10.1111/deci.12657
摘要

Abstract Today, with the advance of artificial intelligence, companies in the real world are using AI as managers to make operational decisions, who can respond quickly to market shocks and whose logic can be fine‐tuned to programmed pessimism/optimism, that is, underestimating/overestimating the market. The introduction of AI managers poses new challenges to supply chain management, and how to manage AI managers warrants further exploration. We investigate the optimal AI manager fine‐tuning strategies in a supply chain consisting of one manufacturer and two competing retailers, each operated by an AI manager in the face of an uncertain market shock. We establish the manufacturer–retailer AI manager fine‐tuning game, where the manufacturer and two retailers endogenously decide whether to fine‐tune their AI managers' logic. The market may suffer an uncertain shock, and once the shock occurs, the AI managers' logic settings and price decisions can be quickly adjusted. We find that the manufacturer would never fine‐tune the AI manager, while the retailers may fine‐tune their AI managers to programmed optimism. Notably, AI manager's fine‐tunability only benefits the retailers and harms the manufacturer, entire supply chain, consumers, and social welfare. To make AI manager's fine‐tunability beneficial to all participants, that is, to reach a win–win–win situation, we design two incentive mechanisms, retailer pessimism incentive mechanism and mutual pessimism incentive mechanism (MPIM), where MPIM can lead to the win–win–win situation. Further, we endogenize the compensation, endogenous retailer pessimism compensation and endogenous mutual pessimism compensation, both achieving the win–win–win outcome. We also make several extensions and provide suggestions for supply chain firms to fine‐tune their AI managers' logic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
1秒前
1秒前
Jason.Z完成签到,获得积分10
5秒前
东十八发布了新的文献求助10
6秒前
朴素的无招完成签到 ,获得积分10
7秒前
9秒前
tong发布了新的文献求助10
9秒前
10秒前
英俊的铭应助帅气的Q采纳,获得30
12秒前
肖123发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
LYL完成签到,获得积分10
18秒前
18秒前
西科Jeremy完成签到,获得积分10
20秒前
25秒前
25秒前
26秒前
27秒前
28秒前
yingying完成签到,获得积分20
30秒前
30秒前
个性灵竹发布了新的文献求助10
30秒前
drew应助Joan采纳,获得10
30秒前
ujnujn发布了新的文献求助10
31秒前
小蒋发布了新的文献求助10
31秒前
33秒前
靓丽行天发布了新的文献求助10
33秒前
屿航发布了新的文献求助20
33秒前
34秒前
香蕉觅云应助龙泉居士采纳,获得10
34秒前
调研昵称发布了新的文献求助10
34秒前
35秒前
geigeigei发布了新的文献求助30
36秒前
329完成签到,获得积分10
38秒前
38秒前
38秒前
糖糖糖发布了新的文献求助10
39秒前
彭于晏应助JimmyY采纳,获得10
40秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207426
求助须知:如何正确求助?哪些是违规求助? 2856733
关于积分的说明 8106829
捐赠科研通 2521947
什么是DOI,文献DOI怎么找? 1355294
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478