对数
螺线管矢量场
幂律
数学
球(数学)
趋同(经济学)
维数(图论)
无穷
度量(数据仓库)
领域(数学)
数学分析
矢量场
纯数学
几何学
计算机科学
统计
数据库
经济增长
经济
作者
Stefano Galatolo,Davide Faranda
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-02-01
卷期号:35 (2)
摘要
We prove that if a non-autonomous system has in a certain sense a fast convergence to equilibrium (faster than any power law behavior), then the time τr(x,y) needed for a typical point x to enter for the first time in a ball B(y,r) centered at y, with small radius r, scales as the local dimension of the equilibrium measure μ at y, i.e., limr→0logτr(x,y)−logr=dμ(y). We then apply the general result to concrete systems of different kinds, showing such a logarithm law for asymptotically autonomous solenoidal maps and mean field coupled expanding maps.
科研通智能强力驱动
Strongly Powered by AbleSci AI