Multi-level fusion network for mild cognitive impairment identification using multi-modal neuroimages

计算机科学 模态(人机交互) 人工智能 特征学习 鉴定(生物学) 代表(政治) 特征(语言学) 深度学习 模式识别(心理学) 任务(项目管理) 情态动词 机器学习 语言学 哲学 植物 化学 管理 政治 政治学 高分子化学 法学 经济 生物
作者
Haozhe Xu,Shengzhou Zhong,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095018-095018 被引量:5
标识
DOI:10.1088/1361-6560/accac8
摘要

Objective. Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD) which is an irreversible progressive neurodegenerative disease and its early diagnosis and intervention are of great significance. Recently, many deep learning methods have demonstrated the advantages of multi-modal neuroimages in MCI identification task. However, previous studies frequently simply concatenate patch-level features for prediction without modeling the dependencies among local features. Also, many methods only focus on modality-sharable information or modality-specific features and ignore their incorporation. This work aims to address above-mentioned issues and construct a model for accurate MCI identification.Approach. In this paper, we propose a multi-level fusion network for MCI identification using multi-modal neuroimages, which consists of local representation learning and dependency-aware global representation learning stages. Specifically, for each patient, we first extract multi-pair of patches from multiple same position in multi-modal neuroimages. After that, in the local representation learning stage, multiple dual-channel sub-networks, each of which consists of two modality-specific feature extraction branches and three sine-cosine fusion modules, are constructed to learn local features that preserve modality-sharable and modality specific representations simultaneously. In the dependency-aware global representation learning stage, we further capture long-range dependencies among local representations and integrate them into global ones for MCI identification.Main results. Experiments on ADNI-1/ADNI-2 datasets demonstrate the superior performance of the proposed method in MCI identification tasks (Accuracy: 0.802, sensitivity: 0.821, specificity: 0.767 in MCI diagnosis task; accuracy: 0.849, sensitivity: 0.841, specificity: 0.856 in MCI conversion task) when compared with state-of-the-art methods. The proposed classification model has demonstrated a promising potential to predict MCI conversion and identify the disease-related regions in the brain.Significance. We propose a multi-level fusion network for MCI identification using multi-modal neuroimage. The results on ADNI datasets have demonstrated its feasibility and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy发布了新的文献求助10
刚刚
明理思真发布了新的文献求助10
1秒前
1秒前
江小白完成签到,获得积分0
2秒前
斯文败类应助在下废物采纳,获得10
3秒前
科研通AI2S应助研友_LjbjzL采纳,获得10
3秒前
4秒前
研友_8oBxrZ完成签到,获得积分10
5秒前
5秒前
Aspirin完成签到,获得积分10
7秒前
8秒前
希望天下0贩的0应助挽风采纳,获得10
8秒前
简单的丑完成签到 ,获得积分10
8秒前
赘婿应助单纯的巧荷采纳,获得10
9秒前
9秒前
英俊的铭应助景笑天采纳,获得10
9秒前
10秒前
画个圈圈恋上荣完成签到,获得积分10
10秒前
11秒前
11秒前
Ava应助Y.B.Cao采纳,获得10
11秒前
科研通AI2S应助明理思真采纳,获得10
11秒前
sjc发布了新的文献求助20
12秒前
Potato发布了新的文献求助10
14秒前
姆问题发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
Epiphany发布了新的文献求助10
15秒前
Creamai完成签到,获得积分10
15秒前
IC完成签到,获得积分20
15秒前
勤劳亦瑶应助春和景明采纳,获得10
17秒前
17秒前
Bell发布了新的文献求助10
18秒前
Ava应助LAN0528采纳,获得10
18秒前
在下废物发布了新的文献求助10
18秒前
互助遵法尚德应助一休采纳,获得10
19秒前
安静的凡松完成签到,获得积分10
19秒前
Tina完成签到 ,获得积分10
19秒前
程大海发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721