Multi-level fusion network for mild cognitive impairment identification using multi-modal neuroimages

计算机科学 模态(人机交互) 人工智能 特征学习 鉴定(生物学) 代表(政治) 特征(语言学) 深度学习 模式识别(心理学) 任务(项目管理) 情态动词 机器学习 语言学 哲学 植物 化学 管理 政治 政治学 高分子化学 法学 经济 生物
作者
Haozhe Xu,Shengzhou Zhong,Yu Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095018-095018 被引量:5
标识
DOI:10.1088/1361-6560/accac8
摘要

Objective. Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD) which is an irreversible progressive neurodegenerative disease and its early diagnosis and intervention are of great significance. Recently, many deep learning methods have demonstrated the advantages of multi-modal neuroimages in MCI identification task. However, previous studies frequently simply concatenate patch-level features for prediction without modeling the dependencies among local features. Also, many methods only focus on modality-sharable information or modality-specific features and ignore their incorporation. This work aims to address above-mentioned issues and construct a model for accurate MCI identification.Approach. In this paper, we propose a multi-level fusion network for MCI identification using multi-modal neuroimages, which consists of local representation learning and dependency-aware global representation learning stages. Specifically, for each patient, we first extract multi-pair of patches from multiple same position in multi-modal neuroimages. After that, in the local representation learning stage, multiple dual-channel sub-networks, each of which consists of two modality-specific feature extraction branches and three sine-cosine fusion modules, are constructed to learn local features that preserve modality-sharable and modality specific representations simultaneously. In the dependency-aware global representation learning stage, we further capture long-range dependencies among local representations and integrate them into global ones for MCI identification.Main results. Experiments on ADNI-1/ADNI-2 datasets demonstrate the superior performance of the proposed method in MCI identification tasks (Accuracy: 0.802, sensitivity: 0.821, specificity: 0.767 in MCI diagnosis task; accuracy: 0.849, sensitivity: 0.841, specificity: 0.856 in MCI conversion task) when compared with state-of-the-art methods. The proposed classification model has demonstrated a promising potential to predict MCI conversion and identify the disease-related regions in the brain.Significance. We propose a multi-level fusion network for MCI identification using multi-modal neuroimage. The results on ADNI datasets have demonstrated its feasibility and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gsdrv完成签到,获得积分10
刚刚
隐形曼青应助长情的清采纳,获得10
刚刚
卡卡西应助long采纳,获得20
刚刚
皮崇知发布了新的文献求助10
刚刚
华仔应助许子健采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
wzjs发布了新的文献求助10
2秒前
Whisper完成签到 ,获得积分10
2秒前
bkagyin应助xcc采纳,获得10
3秒前
zyy211发布了新的文献求助10
3秒前
挖掘机应助相忘于江湖采纳,获得100
4秒前
4秒前
ranguiling发布了新的文献求助10
5秒前
dlgd完成签到,获得积分10
5秒前
西瓜发布了新的文献求助10
5秒前
亮仔发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
星辉发布了新的文献求助10
7秒前
诚心的青荷完成签到,获得积分10
7秒前
CXLan完成签到,获得积分10
10秒前
hute完成签到,获得积分10
10秒前
潇洒的幼萱完成签到,获得积分20
10秒前
李健的小迷弟应助save采纳,获得10
10秒前
11秒前
11秒前
汪简单发布了新的文献求助10
11秒前
aj发布了新的文献求助10
11秒前
酥雨池塘发布了新的文献求助10
12秒前
afrex发布了新的文献求助30
12秒前
12秒前
Atari发布了新的文献求助10
13秒前
松鼠完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646