催化作用
氧化物
氧气
化学工程
化学
材料科学
无机化学
冶金
有机化学
工程类
作者
Na Yao,Hongnan Jia,Juan Zhu,Zhaoping Shi,Hengjiang Cong,Junjie Ge,Wei Luo
出处
期刊:Chem
[Elsevier BV]
日期:2023-04-06
卷期号:9 (7): 1882-1896
被引量:130
标识
DOI:10.1016/j.chempr.2023.03.005
摘要
Summary
The development of highly efficient and stable electrocatalysts toward the acidic oxygen evolution reaction (OER) is essential for the practical application of proton-exchange membrane water electrolyzers. Although Ru oxides possess remarkable initial activity toward the acidic OER due to the kinetically favorable lattice oxygen oxidation mechanism pathway, the soluble high-valence oxygen-vacancy intermediate (∗Vo-RuO42−) may accelerate the dissolution of Ru species, leading to dramatically decreased activity and unsatisfied long-term stability. Here, we developed a robust metal-organic framework anchored strategy by stabilizing atomically isolated Ru oxide on UiO-67-bpydc with strong coordinating pyridine ligands. Theory calculations and experimental results including in situ Raman, X-ray absorption spectroscopy, and 18O-labeled differential electrochemical mass spectrometry reveal that the Ru–N bonds between Ru oxide and UiO-67-bpydc could not only accelerate the participation of lattice oxygen during the OER process but also stabilize the soluble ∗Vo-RuO42− intermediate, which contribute to the enhanced OER performance and long-term stability of up to 115 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI