A collaborative central domain adaptation approach with multi-order graph embedding for bearing fault diagnosis under few-shot samples

计算机科学 嵌入 断层(地质) 图形 降噪 噪音(视频) 数据挖掘 模式识别(心理学) 人工智能 实时计算 算法 理论计算机科学 图像(数学) 地质学 地震学
作者
Wengang Ma,Ruiqi Liu,Jin Guo,Zicheng Wang,Liang Ma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:140: 110243-110243 被引量:22
标识
DOI:10.1016/j.asoc.2023.110243
摘要

Effective fault diagnosis is a prerequisite for ensuring the safe, stable and long-term operation of many rotating machinery. With the rapid development of measurement, sensor and computing technologies, measurement data presents a high-dimensional and massive distribution. This makes the valuable fault information in samples sparse. Moreover, industrial data can only present the distribution state of few-shot unlabeled information. In addition, the vibration signal of bearing faults contains noise interference, leading to poor stability and low efficiency of most models. In this study, we propose an approach for rolling bearing faults diagnosis under few-shot samples. It consists of a multi-order graph embedding stacked denoising auto encoder optimized by an improved sine–cosine​ algorithm (MGE-ISCA-SDAE) and a collaborative central domain adaptation (CCDA). First, a multi-order graph embedding model and an ISCA-based strategy are designed to improve the SDAE, thereby improving the feature extraction effect. To overcome the sparseness of valuable information, we design a CCDA model that learns the fault features using the labeled samples. Subsequently, it is transferred to the target domain of few-shot labeled samples for adaptation. Finally, the intelligent diagnosis is achieved under few-shot samples. We conduct experiments with four datasets. The results show that the MGE-ISCA-SDAE can extract the time–frequency high-level fault features. The CCDA model can transfer the fault samples well. When there are fewer fault samples, our approach has outstanding advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peng丶Young完成签到,获得积分10
刚刚
暴躁的问兰完成签到 ,获得积分10
刚刚
kevin完成签到,获得积分10
1秒前
小蘑菇应助喏晨采纳,获得10
2秒前
3秒前
瞿寒发布了新的文献求助10
3秒前
思源应助百甲采纳,获得10
4秒前
Negoluse发布了新的文献求助50
5秒前
彭于晏应助文斌采纳,获得10
6秒前
123free完成签到,获得积分10
6秒前
8秒前
酷波er应助lan采纳,获得10
9秒前
淼淼完成签到 ,获得积分10
9秒前
王子娇完成签到 ,获得积分10
10秒前
Ray_Chun完成签到,获得积分10
15秒前
活力的妙芙完成签到,获得积分10
18秒前
firewood完成签到,获得积分10
20秒前
wbb完成签到 ,获得积分10
20秒前
暴发户完成签到,获得积分20
21秒前
小蘑菇应助小龙仔123采纳,获得10
24秒前
hero_ljw完成签到,获得积分10
26秒前
111完成签到,获得积分10
27秒前
思源应助科研通管家采纳,获得10
27秒前
dgshbsf应助科研通管家采纳,获得10
27秒前
tramp应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
天天快乐应助科研通管家采纳,获得30
27秒前
27秒前
哈哈哈嘻嘻啦啦完成签到,获得积分20
27秒前
情怀应助科研通管家采纳,获得10
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
27秒前
淡淡的豁应助科研通管家采纳,获得30
28秒前
Owen应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278