Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging

荧光 聚集诱导发射 荧光寿命成像显微镜 纳米技术 生物物理学 化学 材料科学 计算生物学 光学 物理 生物
作者
Yibin Zhang,Miaozhuang Fan,Zhourui Xu,Yihang Jiang,Huijun Ding,Zhengzheng Li,Kaixin Shu,Mingyan Zhao,Gang Feng,Ken‐Tye Yong,Biqin Dong,Wei Zhu,Gaixia Xu
出处
期刊:Journal of Nanobiotechnology [Springer Nature]
卷期号:21 (1) 被引量:8
标识
DOI:10.1186/s12951-023-01864-9
摘要

Abstract Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中安萱完成签到,获得积分10
1秒前
orixero应助冷傲的小之采纳,获得10
2秒前
2秒前
怡然自得发布了新的文献求助10
2秒前
香蕉觅云应助chase采纳,获得10
2秒前
如意的尔蝶完成签到,获得积分10
2秒前
2秒前
小猪佩奇完成签到,获得积分20
3秒前
兴奋土豆完成签到 ,获得积分10
4秒前
4秒前
4秒前
高高代珊完成签到 ,获得积分10
5秒前
6秒前
搞怪千凝发布了新的文献求助10
6秒前
6秒前
酷炫邑发布了新的文献求助10
7秒前
7秒前
Anquan完成签到,获得积分10
8秒前
nagi完成签到 ,获得积分20
8秒前
8秒前
月军完成签到 ,获得积分10
8秒前
10秒前
Hush完成签到 ,获得积分20
11秒前
11秒前
11秒前
热情依白发布了新的文献求助10
11秒前
怡然自得完成签到,获得积分10
11秒前
wuye发布了新的文献求助10
12秒前
星辰大海应助橙子采纳,获得40
12秒前
12秒前
12秒前
huangddg发布了新的文献求助10
13秒前
crazy发布了新的文献求助10
14秒前
14秒前
丰知然应助认真的不评采纳,获得10
14秒前
qy发布了新的文献求助10
14秒前
1234354346完成签到 ,获得积分10
15秒前
黄子完成签到,获得积分10
16秒前
阿旭发布了新的文献求助10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178