Joint Convolutional and Self-Attention Network for Occluded Person Re-Identification

计算机科学 人工智能 编码 卷积神经网络 特征提取 编码器 卷积(计算机科学) 特征(语言学) 计算机视觉 模式识别(心理学) 人工神经网络 生物化学 化学 语言学 哲学 基因 操作系统
作者
Chuxia Yang,Wanshu Fan,Dongsheng Zhou,Qiang Zhang
标识
DOI:10.1109/msn57253.2022.00123
摘要

Occluded person Re-Identification (Re-ID) is built on cross views, which aims to retrieve a target person in occlusion scenes. Under the condition that occlusion leads to the interference of other objects and the loss of personal information, the efficient extraction of personal feature representation is crucial to the recognition accuracy of the system. Most of the existing methods solve this problem by designing various deep networks, which are called convolutional neural networks (CNN)-based methods. Although these methods have the powerful ability to mine local features, they may fail to capture features containing global information due to the limitation of the gaussian distribution property of convolution operation. Recently, methods based on Vision Transformer (ViT) have been successfully employed to person Re-ID task and achieved good performance. However, since ViT-based methods lack the capability of extracting local information from person images, the generated results may severely lose local details. To address these deficiencies, we design a convolution and self-attention aggregation network (CSNet) by combining the advantages of both CNN and ViT. The proposed CSNet consists of three parts. First, to better capture personal information, we adopt Dual-Branch Encoder (DBE) to encode person images. Then, we also embed a Local Information Aggregation Module (LIAM) in the feature map, which effectively leverages the useful information in the local feature map. Finally, a Multi-Head Global-to-Local Attention (MHGLA) module is designed to transmit global information to local features. Experimental results demonstrate the superiority of the proposed method compared with the state-of-the-art (SOTA) methods on both the occluded person Re-ID datasets and the holistic person Re-ID datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kdjm688完成签到,获得积分10
1秒前
TOM龙完成签到,获得积分10
2秒前
2秒前
桥豆麻袋应助ttt采纳,获得10
3秒前
王春琰完成签到 ,获得积分10
4秒前
科研通AI5应助唠叨的以柳采纳,获得10
4秒前
lwl666发布了新的文献求助10
5秒前
领导范儿应助han采纳,获得10
6秒前
6秒前
6秒前
qinchuanniu完成签到,获得积分10
7秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
7秒前
TOM龙发布了新的文献求助10
7秒前
8秒前
今后应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
点点应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得30
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Thien应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助dream采纳,获得10
10秒前
2024dsb完成签到 ,获得积分10
12秒前
12秒前
xiaohuang发布了新的文献求助30
13秒前
高兴断秋发布了新的文献求助10
13秒前
yidingshangan发布了新的文献求助10
13秒前
13秒前
沉默夏真发布了新的文献求助10
15秒前
16秒前
卡卡西西西完成签到,获得积分10
17秒前
18秒前
han发布了新的文献求助10
18秒前
19秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798970
求助须知:如何正确求助?哪些是违规求助? 3344671
关于积分的说明 10321176
捐赠科研通 3061162
什么是DOI,文献DOI怎么找? 1680049
邀请新用户注册赠送积分活动 806877
科研通“疑难数据库(出版商)”最低求助积分说明 763429