Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics

医学 接收机工作特性 置信区间 骨肉瘤 磁共振成像 逻辑回归 无线电技术 放射科 Lasso(编程语言) 核医学 阶段(地层学) 内科学 病理 计算机科学 古生物学 生物 万维网
作者
Zhendong Luo,Jing Li,Yuting Liao,Wenxiao Huang,Yulin Li,Xinping Shen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (3): 611-626 被引量:1
标识
DOI:10.3233/xst-221352
摘要

PURPOSE: This study aims to evaluate the value of applying X-ray and magnetic resonance imaging (MRI) models based on radiomics feature to predict response of extremity high-grade osteosarcoma to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: A retrospective dataset was assembled involving 102 consecutive patients (training dataset, n = 72; validation dataset, n = 30) diagnosed with extremity high-grade osteosarcoma. The clinical features of age, gender, pathological type, lesion location, bone destruction type, size, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were evaluated. Imaging features were extracted from X-ray and multi-parametric MRI (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) data. Features were selected using a two-stage process comprising minimal-redundancy-maximum-relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression. Logistic regression (LR) modelling was then applied to establish models based on clinical, X-ray, and multi-parametric MRI data, as well as combinations of these datasets. Each model was evaluated using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI). RESULTS: AUCs of 5 models using clinical, X-ray radiomics, MRI radiomics, X-ray plus MRI radiomics, and combination of all were 0.760 (95% CI: 0.583–0.937), 0.706 (95% CI: 0.506–0.905), 0.751 (95% CI: 0.572–0.930), 0.796 (95% CI: 0.629–0.963), 0.828 (95% CI: 0.676–0.980), respectively. The DeLong test showed no significant difference between any pair of models (p > 0.05). The combined model yielded higher performance than the clinical and radiomics models as demonstrated by net reclassification improvement (NRI) and integrated difference improvement (IDI) values, respectively. This combined model was also found to be clinically useful in the decision curve analysis (DCA). CONCLUSION: Modelling based on combination of clinical and radiomics data improves the ability to predict pathological responses to NAC in extremity high-grade osteosarcoma compared to the models based on either clinical or radiomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
科研通AI2S应助321采纳,获得10
2秒前
南庭发布了新的文献求助20
3秒前
jssssssss完成签到,获得积分10
3秒前
花儿在做实验完成签到,获得积分10
3秒前
3秒前
可爱的函函应助GGYY采纳,获得10
4秒前
wanci应助666采纳,获得10
5秒前
赘婿应助wayhome采纳,获得10
5秒前
5秒前
木之木完成签到,获得积分10
6秒前
jssssssss发布了新的文献求助10
6秒前
不易BY完成签到,获得积分10
6秒前
赘婿应助ZSQ采纳,获得10
6秒前
6秒前
7秒前
我是老大应助LC采纳,获得10
7秒前
耍酷延恶发布了新的文献求助10
7秒前
娜娜子欧发布了新的文献求助10
7秒前
7秒前
qiaomai发布了新的文献求助10
8秒前
淡淡念柏完成签到,获得积分10
8秒前
袁翰将军完成签到 ,获得积分10
9秒前
益达完成签到 ,获得积分20
9秒前
9秒前
笑点低大白菜真实的钥匙完成签到,获得积分10
11秒前
黄鱼饼完成签到,获得积分10
12秒前
韩书琴发布了新的文献求助20
12秒前
12秒前
温柔惜筠应助marson采纳,获得10
13秒前
HEIKU应助mango采纳,获得10
13秒前
ly发布了新的文献求助10
14秒前
shitou6给shitou6的求助进行了留言
15秒前
Book思议完成签到 ,获得积分10
15秒前
修狗2完成签到,获得积分20
15秒前
蔚蓝完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384