Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics

医学 接收机工作特性 置信区间 骨肉瘤 磁共振成像 逻辑回归 无线电技术 放射科 Lasso(编程语言) 核医学 阶段(地层学) 内科学 病理 计算机科学 古生物学 生物 万维网
作者
Zhendong Luo,Jing Li,Yuting Liao,Wenxiao Huang,Yulin Li,Xinping Shen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (3): 611-626 被引量:1
标识
DOI:10.3233/xst-221352
摘要

PURPOSE: This study aims to evaluate the value of applying X-ray and magnetic resonance imaging (MRI) models based on radiomics feature to predict response of extremity high-grade osteosarcoma to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: A retrospective dataset was assembled involving 102 consecutive patients (training dataset, n = 72; validation dataset, n = 30) diagnosed with extremity high-grade osteosarcoma. The clinical features of age, gender, pathological type, lesion location, bone destruction type, size, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were evaluated. Imaging features were extracted from X-ray and multi-parametric MRI (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) data. Features were selected using a two-stage process comprising minimal-redundancy-maximum-relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression. Logistic regression (LR) modelling was then applied to establish models based on clinical, X-ray, and multi-parametric MRI data, as well as combinations of these datasets. Each model was evaluated using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI). RESULTS: AUCs of 5 models using clinical, X-ray radiomics, MRI radiomics, X-ray plus MRI radiomics, and combination of all were 0.760 (95% CI: 0.583–0.937), 0.706 (95% CI: 0.506–0.905), 0.751 (95% CI: 0.572–0.930), 0.796 (95% CI: 0.629–0.963), 0.828 (95% CI: 0.676–0.980), respectively. The DeLong test showed no significant difference between any pair of models (p > 0.05). The combined model yielded higher performance than the clinical and radiomics models as demonstrated by net reclassification improvement (NRI) and integrated difference improvement (IDI) values, respectively. This combined model was also found to be clinically useful in the decision curve analysis (DCA). CONCLUSION: Modelling based on combination of clinical and radiomics data improves the ability to predict pathological responses to NAC in extremity high-grade osteosarcoma compared to the models based on either clinical or radiomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵尔安完成签到,获得积分10
1秒前
goldNAN完成签到,获得积分10
1秒前
wml应助文艺的冬日采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
Owen应助科研通管家采纳,获得10
1秒前
qiongqiong完成签到,获得积分10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
w王w完成签到,获得积分10
1秒前
所所应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
萧瑟处完成签到,获得积分10
2秒前
eric888应助科研通管家采纳,获得100
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
eric888应助科研通管家采纳,获得100
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
王小橘应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
ddong完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
snwnqi应助科研通管家采纳,获得10
2秒前
keavy完成签到,获得积分10
3秒前
Function完成签到,获得积分10
4秒前
丘比特应助小彭采纳,获得10
4秒前
。。。完成签到,获得积分10
5秒前
超级Huan完成签到,获得积分10
6秒前
聪明一完成签到,获得积分10
6秒前
落后的冬寒完成签到,获得积分10
6秒前
烂漫的闭月完成签到,获得积分10
6秒前
zdy!完成签到,获得积分10
7秒前
7秒前
彘shen完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414141
求助须知:如何正确求助?哪些是违规求助? 4531151
关于积分的说明 14126764
捐赠科研通 4446385
什么是DOI,文献DOI怎么找? 2439400
邀请新用户注册赠送积分活动 1431501
关于科研通互助平台的介绍 1409212