Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics

医学 接收机工作特性 置信区间 骨肉瘤 磁共振成像 逻辑回归 无线电技术 放射科 Lasso(编程语言) 核医学 阶段(地层学) 内科学 病理 计算机科学 古生物学 生物 万维网
作者
Zhendong Luo,Jing Li,Yuting Liao,Wenxiao Huang,Yulin Li,Xinping Shen
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (3): 611-626 被引量:1
标识
DOI:10.3233/xst-221352
摘要

PURPOSE: This study aims to evaluate the value of applying X-ray and magnetic resonance imaging (MRI) models based on radiomics feature to predict response of extremity high-grade osteosarcoma to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: A retrospective dataset was assembled involving 102 consecutive patients (training dataset, n = 72; validation dataset, n = 30) diagnosed with extremity high-grade osteosarcoma. The clinical features of age, gender, pathological type, lesion location, bone destruction type, size, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were evaluated. Imaging features were extracted from X-ray and multi-parametric MRI (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) data. Features were selected using a two-stage process comprising minimal-redundancy-maximum-relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression. Logistic regression (LR) modelling was then applied to establish models based on clinical, X-ray, and multi-parametric MRI data, as well as combinations of these datasets. Each model was evaluated using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI). RESULTS: AUCs of 5 models using clinical, X-ray radiomics, MRI radiomics, X-ray plus MRI radiomics, and combination of all were 0.760 (95% CI: 0.583–0.937), 0.706 (95% CI: 0.506–0.905), 0.751 (95% CI: 0.572–0.930), 0.796 (95% CI: 0.629–0.963), 0.828 (95% CI: 0.676–0.980), respectively. The DeLong test showed no significant difference between any pair of models (p > 0.05). The combined model yielded higher performance than the clinical and radiomics models as demonstrated by net reclassification improvement (NRI) and integrated difference improvement (IDI) values, respectively. This combined model was also found to be clinically useful in the decision curve analysis (DCA). CONCLUSION: Modelling based on combination of clinical and radiomics data improves the ability to predict pathological responses to NAC in extremity high-grade osteosarcoma compared to the models based on either clinical or radiomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美梨愁完成签到 ,获得积分10
刚刚
刚刚
yangjinru完成签到 ,获得积分10
刚刚
aixin完成签到,获得积分10
1秒前
阿斯顿发布了新的文献求助10
1秒前
YWD完成签到,获得积分10
1秒前
1秒前
xu发布了新的文献求助10
2秒前
罐罐儿完成签到,获得积分0
2秒前
leeOOO完成签到,获得积分10
2秒前
2秒前
刘zx完成签到,获得积分10
2秒前
2秒前
肥仔完成签到 ,获得积分20
2秒前
小郭完成签到 ,获得积分10
3秒前
快乐小子发布了新的文献求助10
3秒前
等待小刺猬完成签到,获得积分10
3秒前
纯真的伟诚完成签到,获得积分10
4秒前
研友_enP05n完成签到,获得积分10
4秒前
badadaa完成签到 ,获得积分10
4秒前
Sciiiiiii发布了新的文献求助10
5秒前
qaz给qaz的求助进行了留言
6秒前
ideal完成签到 ,获得积分10
6秒前
快乐枫发布了新的文献求助10
6秒前
小二郎应助Raye采纳,获得10
7秒前
yu完成签到,获得积分10
7秒前
7秒前
幽默小虾米完成签到,获得积分10
8秒前
大白菜完成签到,获得积分10
8秒前
magicyang完成签到,获得积分10
8秒前
ABin完成签到,获得积分10
9秒前
馆长应助名称采纳,获得10
9秒前
kytwenxian完成签到,获得积分0
9秒前
Brot完成签到,获得积分20
10秒前
xu完成签到,获得积分10
10秒前
_hhhjhhh完成签到,获得积分10
10秒前
任夏完成签到,获得积分10
12秒前
晒晒太阳的小猪关注了科研通微信公众号
12秒前
小李完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571205
求助须知:如何正确求助?哪些是违规求助? 3992388
关于积分的说明 12357887
捐赠科研通 3665364
什么是DOI,文献DOI怎么找? 2020042
邀请新用户注册赠送积分活动 1054379
科研通“疑难数据库(出版商)”最低求助积分说明 941973