Multi‐AGV route planning in automated warehouse system based on shortest‐time Q‐learning algorithm

线路规划 计算机科学 算法 平面图(考古学) 邻接矩阵 邻接表 运动规划 机器人 数学优化 人工智能 理论计算机科学 数学 图形 考古 历史
作者
Zheng Zhang,Juan Chen,Wenbing Zhao
出处
期刊:Asian Journal of Control [Wiley]
卷期号:26 (2): 683-702 被引量:5
标识
DOI:10.1002/asjc.3075
摘要

Abstract Route planning for automated guided vehicles (AGVs) is one of the key factors that affects work efficiency of automated storage and retrieval systems (AS/RSes). Route planning plays an important role in the operation of AGVs. Since the characteristic of AS/RSes is chessboard‐like, the environment is more complex than traditional route planning environments because the number of nodes is large, more than one shortest route exists between two nodes, and the routes with the shortest distance may not be the most energy‐saving routes. Although the traditional route planning algorithms such as the classical Q‐learning algorithm can work well in AGV route planning, it also has some limitations. This paper proposes a novel multi‐AGV route planning approach to solving the AGV route planning problem in the chessboard‐like warehouse, which can improve the route planning efficiency greatly. First, by combining adjacency matrix and reward matrix, we propose a low‐dimensional adjacency‐reward matrix for route planning. This algorithm improves the efficiency of classical Q‐learning algorithms and accelerates dynamic route planning significantly. We further improve the algorithm by considering the travel directions to minimize the number of turns in the route and additionally by considering whether the AGV is loaded or not and plan routes accordingly. Finally, we propose a multi‐AGV online collision‐free route planning algorithm based on these considerations for dynamic route planning for multi‐AGVs operating in a large‐scale warehouse. The proposed algorithms are validated with several case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六完成签到,获得积分10
刚刚
牧之原翔子完成签到,获得积分10
1秒前
安静幻枫给xiaoka的求助进行了留言
2秒前
DYJ发布了新的文献求助10
2秒前
追寻思雁发布了新的文献求助10
3秒前
J-R完成签到,获得积分10
3秒前
mengbo完成签到,获得积分10
3秒前
4秒前
Zn应助Tycoon采纳,获得10
4秒前
hibiwi驳回了田様应助
6秒前
6秒前
大模型应助ly采纳,获得10
7秒前
7秒前
雪山飞龙发布了新的文献求助10
8秒前
Leif应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
暴躁四叔应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
哇哈哈发布了新的文献求助10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
努力搞科研的小徐完成签到,获得积分20
10秒前
loveyouxkkt发布了新的文献求助30
10秒前
Xiaoxiao应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
我是老大应助科研通管家采纳,获得10
11秒前
Leif应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI5应助paul52020采纳,获得30
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462