Combining data and physical models for probabilistic analysis: A Bayesian Augmented Space Learning perspective

概率逻辑 计算机科学 贝叶斯推理 推论 有限元法 贝叶斯概率 机器学习 物理系统 透视图(图形) 统计模型 算法 统计推断 人工智能 数学 数据挖掘 统计 工程类 结构工程 物理 量子力学
作者
Fangqi Hong,Pengfei Wei,Jingwen Song,Matthias G.R. Faes,Marcos A. Valdebenito,Michael Beer
出处
期刊:Probabilistic Engineering Mechanics [Elsevier]
卷期号:73: 103474-103474 被引量:1
标识
DOI:10.1016/j.probengmech.2023.103474
摘要

The traditional methods for probabilistic analysis of physical systems often follow a non-intrusive scheme with, random samples for stochastic model parameters generated in the outer loop, and for each sample, physical model (described by PDEs) solved in the inner loop using, e.g., finite element method (FEM). Two of the biggest challenges when applying probabilistic methods are the high computational burden due to the repeated calls of the expensive-to-estimate computational models, and the difficulties of integrating the numerical errors from both loops. To overcome these challenges, we present a new framework for transforming the PDEs with stochastic parameters into equivalent deterministic PDEs, and then devise a statistical inference method, called Bayesian Augmented Space Learning (BASL), for inferring the probabilistic descriptors of the model responses with the combination of measurement data and physical models. With the two sources of information available, only a one-step Bayesian inference needs to be performed, and the numerical errors are summarized by posterior variances. The method is then further extended to the case where the values of the parameters of the test pieces for measurement are not precisely known. The effectiveness of the proposed methods is demonstrated with academic and real-world physical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxllllll发布了新的文献求助10
1秒前
kwq发布了新的文献求助10
1秒前
圆圆完成签到 ,获得积分10
1秒前
拾玖发布了新的文献求助10
1秒前
怕黑的纸鹤完成签到,获得积分10
2秒前
qi0625完成签到,获得积分10
2秒前
苹果完成签到,获得积分20
3秒前
小蘑菇应助YANG采纳,获得10
3秒前
大模型应助红豆大王采纳,获得10
4秒前
4秒前
4秒前
害羞的山柏完成签到,获得积分20
4秒前
慧慧完成签到,获得积分10
4秒前
Proddy完成签到,获得积分10
4秒前
4秒前
果粒儿发布了新的文献求助20
4秒前
zyl发布了新的文献求助10
4秒前
积极的随阴完成签到,获得积分10
5秒前
5秒前
斯文麦片完成签到 ,获得积分10
5秒前
5秒前
5秒前
汉堡包应助yyang采纳,获得10
6秒前
跳跃语蝶完成签到 ,获得积分10
6秒前
lala发布了新的文献求助10
6秒前
6秒前
7秒前
qq发布了新的文献求助10
8秒前
大模型应助小刀yeye采纳,获得10
8秒前
8秒前
bkagyin应助lllll采纳,获得10
9秒前
金子发布了新的文献求助10
9秒前
自然妙旋完成签到,获得积分10
9秒前
10秒前
归尘发布了新的文献求助30
10秒前
chengxinxin完成签到,获得积分10
10秒前
平常的老头完成签到,获得积分10
10秒前
John_sdu完成签到,获得积分10
10秒前
10秒前
江随烨发布了新的文献求助10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388431
求助须知:如何正确求助?哪些是违规求助? 4510493
关于积分的说明 14035669
捐赠科研通 4421255
什么是DOI,文献DOI怎么找? 2428741
邀请新用户注册赠送积分活动 1421317
关于科研通互助平台的介绍 1400559