A Deep Learning–Based Approach for Empirical Modeling of Single-Point Wave Spectra in Open Oceans

风浪 风浪模型 谱线 地质学 领域(数学) 电磁频谱 气象学 遥感 波浪模型 计算机科学 物理 光学 数学 天文 海洋学 纯数学
作者
Yuhao Song,Haoyu Jiang
出处
期刊:Journal of Physical Oceanography [American Meteorological Society]
卷期号:53 (9): 2089-2103 被引量:3
标识
DOI:10.1175/jpo-d-22-0198.1
摘要

Abstract Directional wave spectra are of importance for numerous practical applications such as seafaring and ocean engineering. The wave spectral densities at a certain point in the open ocean are significantly correlated to the local wind field and historical remote wind field. This feature can be used to predict the wave spectrum at that point using the wind field. In this study, a convolutional neural network (CNN) model was established to estimate wave spectra at a target point using the wind field from the ERA5 dataset. A geospatial range where the wind could impact the target point was selected, and then the historical wind field data within the range were analyzed to extract the nonlinear quantitative relationships between wind fields and wave spectra. For the spectral densities at a given direction, the wind data along the direction where waves come from were used as the input of the CNN. The model was trained to minimize the mean square error between the CNN-predicted and ERA5 reanalysis spectral density. The data structure of the wind input is reorganized into a polar grid centered on the target point to make the model applicable to different open-ocean locations worldwide. The results show that the model can predict well the wave spectrum shapes and integral wave parameters. The model allows for the prediction of single-point wave spectra in the open ocean with low computational cost and can be helpful for the study of spectral wave climate. Significance Statement The directional wave spectra (DWS) describe the distribution of wave energy among different frequencies and directions. They are useful for many marine practical applications. Usually, DWS are modeled using numerical wave models (NWMs) based on wave action balance differential equations. Although contemporary NWMs perform well after years of development, their computational costs are relatively high. The fast-developed artificial intelligence (AI) might provide an alternative solution to this task. In this study, convolutional neural networks are used to model the DWS at some selected points in the open ocean. By “learning” from NWM data, AI can effectively simulate single-point DWS in open oceans with low computational cost, which can serve as a faster data-driven surrogate model in related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUU完成签到,获得积分10
刚刚
桐桐应助无所屌谓采纳,获得10
1秒前
2秒前
2秒前
Orange应助小罗同学采纳,获得10
2秒前
2秒前
三三完成签到,获得积分10
2秒前
隐形的傲易完成签到 ,获得积分10
2秒前
mt应助中二少女爱喝可乐采纳,获得10
3秒前
大棒槌完成签到,获得积分10
3秒前
杜好好完成签到,获得积分0
4秒前
蒋蒋蒋发布了新的文献求助10
4秒前
5秒前
5秒前
光亮面包完成签到 ,获得积分10
5秒前
大棒槌发布了新的文献求助10
6秒前
苗条绝义应助勤劳的无心采纳,获得10
6秒前
SYLH应助Snoopy采纳,获得10
6秒前
jygjhgy完成签到,获得积分10
7秒前
xhuryts完成签到,获得积分10
7秒前
7秒前
cach完成签到,获得积分10
7秒前
别摆烂了完成签到,获得积分10
7秒前
施耐德发布了新的文献求助10
8秒前
FashionBoy应助白椋采纳,获得10
8秒前
个性南莲完成签到,获得积分10
9秒前
Suge6完成签到,获得积分10
9秒前
英勇金毛发布了新的文献求助10
10秒前
11秒前
欣喜书桃完成签到,获得积分10
11秒前
年轻冥茗完成签到,获得积分10
11秒前
英俊的铭应助志豪采纳,获得10
11秒前
11秒前
云淡风轻一宝完成签到,获得积分10
12秒前
蔡蔡不菜菜完成签到,获得积分10
12秒前
冰儿菲菲完成签到,获得积分10
13秒前
天马行空完成签到,获得积分10
14秒前
14秒前
CAST1347完成签到,获得积分10
14秒前
SYLH应助施耐德采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910