电化学
催化作用
甲醇
法拉第效率
吸附
氧化还原
电解
Atom(片上系统)
化学
傅里叶变换红外光谱
电催化剂
材料科学
无机化学
电极
物理化学
化学工程
有机化学
嵌入式系统
工程类
电解质
计算机科学
作者
Xinyi Ren,Jian Zhao,Xuning Li,Junming Shao,Binbin Pan,Aude Salamé,Etienne Boutin,Thomas Groizard,Shifu Wang,Jie Ding,Xiong Zhang,Wen-Yang Huang,Wen‐Jing Zeng,Chengyu Liu,Yanguang Li,Sung‐Fu Hung,Yanqiang Huang,Marc Robert,Bin Liu
标识
DOI:10.1038/s41467-023-39153-6
摘要
While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.
科研通智能强力驱动
Strongly Powered by AbleSci AI