Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨石发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
瘦瘦青荷完成签到,获得积分10
2秒前
诩阽完成签到,获得积分10
2秒前
汉堡包应助lll采纳,获得30
3秒前
大模型应助谦让水香采纳,获得10
3秒前
3秒前
3秒前
阔达的萤完成签到,获得积分10
4秒前
不回首完成签到 ,获得积分10
4秒前
会会发布了新的文献求助10
5秒前
BINGBING1230发布了新的文献求助10
5秒前
淡然的青旋完成签到 ,获得积分10
5秒前
yaoyh_gc发布了新的文献求助10
6秒前
layla完成签到 ,获得积分10
6秒前
CodeCraft应助barry采纳,获得10
7秒前
7秒前
乐乐应助王晨露采纳,获得10
8秒前
科目三应助空空大师采纳,获得10
8秒前
guo驳回了Orange应助
8秒前
全明星阿杜完成签到,获得积分10
8秒前
9秒前
麦麦完成签到,获得积分10
9秒前
10秒前
Criminology34应助shandianluwei采纳,获得10
10秒前
赘婿应助shandianluwei采纳,获得30
10秒前
缓慢千易完成签到 ,获得积分10
11秒前
12秒前
12秒前
tzl发布了新的文献求助10
12秒前
苏卿应助yaoyaoya采纳,获得10
13秒前
852应助一个小柠檬采纳,获得10
14秒前
14秒前
14秒前
mauve完成签到 ,获得积分10
15秒前
16秒前
yannick发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308126
求助须知:如何正确求助?哪些是违规求助? 4453339
关于积分的说明 13857031
捐赠科研通 4341040
什么是DOI,文献DOI怎么找? 2383601
邀请新用户注册赠送积分活动 1378277
关于科研通互助平台的介绍 1346269