亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁33完成签到,获得积分10
4秒前
HH完成签到 ,获得积分10
12秒前
18秒前
18秒前
我不爱吃红苹果完成签到,获得积分10
26秒前
29秒前
41秒前
在水一方应助安详的面包采纳,获得10
1分钟前
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
1分钟前
fenfen发布了新的文献求助10
1分钟前
1分钟前
1分钟前
!hau发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
瓜6发布了新的文献求助10
1分钟前
!hau完成签到,获得积分10
1分钟前
FashionBoy应助AaronW采纳,获得10
1分钟前
酷波er应助橙子采纳,获得10
2分钟前
flyinthesky完成签到,获得积分10
2分钟前
瓜6完成签到 ,获得积分20
2分钟前
2分钟前
Bluestar完成签到,获得积分10
2分钟前
2分钟前
张晓祁完成签到,获得积分10
2分钟前
Dreamchaser完成签到,获得积分10
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
iamssj发布了新的文献求助10
3分钟前
3分钟前
Auralis完成签到 ,获得积分10
3分钟前
3分钟前
善良菠萝完成签到 ,获得积分10
3分钟前
所所应助bastien采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515755
求助须知:如何正确求助?哪些是违规求助? 4609064
关于积分的说明 14514370
捐赠科研通 4545564
什么是DOI,文献DOI怎么找? 2490694
邀请新用户注册赠送积分活动 1472586
关于科研通互助平台的介绍 1444274