亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
576-576完成签到 ,获得积分10
18秒前
22秒前
没有几十亿完成签到,获得积分10
28秒前
28秒前
45秒前
虾青素应助王英俊采纳,获得10
56秒前
JavedAli完成签到,获得积分10
1分钟前
ok123完成签到 ,获得积分10
1分钟前
慕青应助Ha采纳,获得10
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
1分钟前
Ha完成签到,获得积分20
1分钟前
Ha发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
薛清棵发布了新的文献求助10
2分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
HD发布了新的文献求助10
3分钟前
3分钟前
4分钟前
HD完成签到,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
李爱国应助不是小苦瓜采纳,获得10
4分钟前
不是小苦瓜完成签到,获得积分20
4分钟前
4分钟前
yangyueqiong发布了新的文献求助10
4分钟前
yangyueqiong完成签到,获得积分10
4分钟前
zm完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Marciu33应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
唐泽雪穗发布了新的文献求助10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438