Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助健忘的雨安采纳,获得10
1秒前
dfggg发布了新的文献求助10
1秒前
饱满的问丝完成签到,获得积分10
2秒前
3秒前
大水完成签到 ,获得积分10
4秒前
4秒前
Akira完成签到,获得积分20
5秒前
隐形曼青应助是ok耶采纳,获得10
6秒前
7秒前
7秒前
11111发布了新的文献求助20
8秒前
大水发布了新的文献求助10
10秒前
10秒前
小蘑菇应助保持科研热情采纳,获得10
10秒前
所所应助蓦然采纳,获得10
11秒前
11秒前
爱科研的小蜗啊完成签到,获得积分10
12秒前
从容梦山发布了新的文献求助10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
luo完成签到,获得积分10
15秒前
16秒前
HQQ完成签到,获得积分20
16秒前
Ava应助夏洛采纳,获得10
17秒前
小二郎应助violet采纳,获得10
17秒前
乐观的灭绝完成签到,获得积分10
18秒前
文艺大白菜完成签到,获得积分10
18秒前
难过的谷芹应助无为采纳,获得10
18秒前
情怀应助Ljh采纳,获得10
19秒前
20秒前
20秒前
20秒前
赘婿应助秋qiu采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848