亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机发布了新的文献求助10
1秒前
6秒前
吕半鬼完成签到,获得积分0
7秒前
Jy发布了新的文献求助10
10秒前
10秒前
13秒前
liubai发布了新的文献求助10
18秒前
萤火虫完成签到,获得积分10
18秒前
Alimove给Alimove的求助进行了留言
19秒前
20秒前
木有完成签到 ,获得积分10
20秒前
FashionBoy应助GamePlayer采纳,获得10
21秒前
英俊的铭应助GamePlayer采纳,获得10
21秒前
SciGPT应助GamePlayer采纳,获得10
21秒前
CodeCraft应助GamePlayer采纳,获得10
21秒前
nkuwangkai完成签到,获得积分10
21秒前
顾矜应助GamePlayer采纳,获得10
21秒前
Owen应助GamePlayer采纳,获得10
21秒前
Jy完成签到,获得积分10
21秒前
Ava应助GamePlayer采纳,获得10
21秒前
核桃应助GamePlayer采纳,获得10
21秒前
可久斯基完成签到 ,获得积分10
22秒前
王啦啦发布了新的文献求助10
23秒前
药学牛马完成签到 ,获得积分10
28秒前
CodeCraft应助矢思然采纳,获得10
29秒前
蓝华完成签到 ,获得积分10
31秒前
周浩宇发布了新的文献求助10
41秒前
科研通AI5应助喷火娃采纳,获得10
42秒前
45秒前
兔兔兔应助科研通管家采纳,获得10
47秒前
酷波er应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
桐桐应助科研通管家采纳,获得10
47秒前
47秒前
汉堡包应助科研通管家采纳,获得10
47秒前
cao完成签到 ,获得积分10
49秒前
周浩宇完成签到,获得积分10
50秒前
51秒前
vchen0621完成签到,获得积分0
52秒前
整齐的飞兰完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539886
求助须知:如何正确求助?哪些是违规求助? 3973990
关于积分的说明 12309917
捐赠科研通 3640925
什么是DOI,文献DOI怎么找? 2004842
邀请新用户注册赠送积分活动 1040262
科研通“疑难数据库(出版商)”最低求助积分说明 929417