亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gdfhdzhdht完成签到,获得积分10
3秒前
段誉完成签到 ,获得积分10
1分钟前
在水一方应助fff采纳,获得10
1分钟前
1分钟前
久工力发布了新的文献求助10
1分钟前
wanci应助a134680采纳,获得10
1分钟前
ephore应助久工力采纳,获得30
1分钟前
a134680完成签到,获得积分10
2分钟前
汉堡包应助韩宇航采纳,获得10
2分钟前
2分钟前
韩宇航发布了新的文献求助10
2分钟前
2分钟前
a134680发布了新的文献求助10
3分钟前
UsihaGuwalgiya完成签到,获得积分10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
久工力完成签到,获得积分10
4分钟前
4分钟前
fff发布了新的文献求助10
4分钟前
4分钟前
Kumquat发布了新的文献求助10
5分钟前
Jasper应助fff采纳,获得10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
jiajia完成签到 ,获得积分10
6分钟前
7分钟前
chenzhuod发布了新的文献求助10
8分钟前
chenzhuod完成签到,获得积分10
8分钟前
mmyhn应助科研通管家采纳,获得10
9分钟前
9分钟前
周柏洋发布了新的文献求助30
9分钟前
Ava应助Kumquat采纳,获得10
10分钟前
Sandy完成签到 ,获得积分10
11分钟前
可爱的函函应助周柏洋采纳,获得10
12分钟前
wang完成签到,获得积分10
12分钟前
12分钟前
Kumquat发布了新的文献求助10
12分钟前
wanci应助Kumquat采纳,获得10
12分钟前
13分钟前
周柏洋发布了新的文献求助10
13分钟前
mmyhn应助科研通管家采纳,获得10
13分钟前
隐形曼青应助wwwww采纳,获得10
13分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068106
求助须知:如何正确求助?哪些是违规求助? 2722110
关于积分的说明 7476020
捐赠科研通 2369109
什么是DOI,文献DOI怎么找? 1256195
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596826