已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning approach to model and predict the shear strength of TZM-graphite joint bonded by spark plasma sintering

放电等离子烧结 材料科学 人工神经网络 均方误差 反向传播 抗剪强度(土壤) 平均绝对百分比误差 石墨 钛合金 烧结 相关系数 合金 剪切(地质) 复合材料 冶金 机器学习 结构工程 计算机科学 数学 工程类 统计 土壤科学 土壤水分 环境科学
作者
Sai Krishna Prashanth Kolluru,S.D.S. Abhiram Kalvakolanu,Sai Ganesh Chinthapanti,Sai Teja Palakurthy
出处
期刊:Materials Today: Proceedings [Elsevier]
标识
DOI:10.1016/j.matpr.2023.05.704
摘要

These days, the study of titanium alloys has grown into a sizable topic of study. Due to its remarkable high-temperature applications, titanium zirconium molybdenum (TZM) is one such alloy with considerable research potential. In this study, the shear strength of TZM-graphite alloy, which was bonded using the spark plasma sintering (SPS) process with titanium foil as an interlayer, has been predicted using a machine learning approach. The shear strength of the TZM-graphite alloy depends on various process parameters such as sintering temperature, sintering pressure, holding time, and intermediate layer thickness. Since the correlation between input variables and output variables is intricate and non-linear, an artificial neural network (ANN) model was developed in this research to investigate the relationship between bonding parameters and the shear strength of the TZM-graphite joint. The feed-forward backpropagation neural network was utilized for training the model and predicting the shear strength. By computing the Mean square error (MSE) and Average error (AE), the optimum number of neurons in the hidden layers was determined. Consequently, the model with 4–9-9–1 architecture was constructed, and its accuracy was assessed by contrasting the values obtained by the neural network with actual experimental data. The model was then validated using a variety of performance measuring indicators such as mean absolute percentage error (MAPE) and root mean square error (RMSE). The achieved correlation coefficient (R-value) of 0.99614% demonstrates that the proposed ANN model is an excellent fit for the experimental data to predict the accurate shear strength of the TZM-graphite joint. For further understanding of the influence of input parameters on the shear strength of the TZM-graphite joint, 2D and 3D surface graphs were plotted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰色与青发布了新的文献求助10
刚刚
2秒前
陈道哥完成签到 ,获得积分10
4秒前
4秒前
4秒前
阿俊1212发布了新的文献求助10
5秒前
5秒前
王顺扬发布了新的文献求助10
5秒前
骆如雪完成签到,获得积分10
5秒前
CooDemon完成签到,获得积分20
6秒前
Q哈哈哈发布了新的文献求助10
6秒前
chuanyongcui发布了新的文献求助10
7秒前
juzitinghai完成签到,获得积分10
7秒前
CooDemon发布了新的文献求助10
9秒前
9秒前
灰色与青发布了新的文献求助10
10秒前
11秒前
觅柔完成签到,获得积分10
11秒前
yu完成签到,获得积分10
12秒前
12秒前
12秒前
两千完成签到,获得积分10
14秒前
15秒前
17秒前
廖其琪发布了新的文献求助10
17秒前
RAY1发布了新的文献求助10
18秒前
19秒前
冰棒比冰冰完成签到 ,获得积分10
20秒前
笨笨念文完成签到 ,获得积分10
20秒前
芜湖发布了新的文献求助10
20秒前
NexusExplorer应助Nature_Science采纳,获得10
21秒前
zhan20200503完成签到,获得积分10
21秒前
lay完成签到,获得积分10
23秒前
23秒前
木鱼大呆完成签到,获得积分10
24秒前
24秒前
长情无心完成签到,获得积分10
25秒前
zz完成签到,获得积分10
26秒前
26秒前
慕青应助廖其琪采纳,获得10
26秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485