NMR-based metabolomic profiling identifies inflammation and muscle-related metabolites as predictors of incident type 2 diabetes mellitus beyond glucose: The Di@bet.es study

医学 糖尿病 肌酸 肌酐 内科学 2型糖尿病 置信区间 2型糖尿病 逻辑回归 内分泌学 混淆 超重 体质指数
作者
Enrique Ozcariz,Montse Guardiola,Núria Amigó,Gemma Rojo‐Martínez,Sergio Valdés,Pere Rehues,L. Masana,Josep Ribalta
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:202: 110772-110772 被引量:4
标识
DOI:10.1016/j.diabres.2023.110772
摘要

The aim of this study was to combine nuclear magnetic resonance-based metabolomics and machine learning to find a glucose-independent molecular signature associated with future type 2 diabetes mellitus development in a subgroup of individuals from the Di@bet.es study.The study group included 145 individuals developing type 2 diabetes mellitus during the 8-year follow-up, 145 individuals matched by age, sex and BMI who did not develop diabetes during the follow-up but had equal glucose concentrations to those who did and 145 controls matched by age and sex. A metabolomic analysis of serum was performed to obtain the lipoprotein and glycoprotein profiles and 15 low molecular weight metabolites. Several machine learning-based models were trained.Logistic regression performed the best classification between individuals developing type 2 diabetes during the follow-up and glucose-matched individuals. The area under the curve was 0.628, and its 95% confidence interval was 0.510-0.746. Glycoprotein-related variables, creatinine, creatine, small HDL particles and the Johnson-Neyman intervals of the interaction of Glyc A and Glyc B were statistically significant.The model highlighted a relevant contribution of inflammation (glycosylation pattern and HDL) and muscle (creatinine and creatine) in the development of type 2 diabetes as independent factors of hyperglycemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星川完成签到,获得积分10
2秒前
xpy发布了新的文献求助10
3秒前
3秒前
qiqiqiqiqi完成签到 ,获得积分10
3秒前
4秒前
情怀应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
lingua给lingua的求助进行了留言
7秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
自然完成签到,获得积分10
7秒前
lookspace完成签到,获得积分10
7秒前
7秒前
自觉的时光完成签到,获得积分10
8秒前
hh发布了新的文献求助10
8秒前
畅快的海冬完成签到,获得积分10
9秒前
library2025应助老张采纳,获得10
10秒前
赚大钱完成签到,获得积分20
10秒前
hesongwen完成签到,获得积分10
13秒前
lhf完成签到,获得积分10
13秒前
qin希望应助畅快的海冬采纳,获得10
13秒前
原鑫完成签到 ,获得积分10
14秒前
忘记密码发布了新的文献求助10
14秒前
14秒前
yangjinru完成签到 ,获得积分10
16秒前
xiyinzhiwu完成签到,获得积分10
16秒前
bingyu306完成签到,获得积分10
17秒前
刘丰丰完成签到 ,获得积分10
17秒前
赚大钱发布了新的文献求助30
18秒前
999完成签到,获得积分10
18秒前
李爱国应助Ge Xiang采纳,获得10
18秒前
listener应助zhuo采纳,获得10
19秒前
22秒前
23秒前
辛勤的剑成完成签到 ,获得积分10
24秒前
阿兰完成签到 ,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578