Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 数学分析 哲学 认识论 政治 政治学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhusy完成签到 ,获得积分10
1秒前
可爱的函函应助wanna采纳,获得10
1秒前
怕孤单的山河完成签到,获得积分10
1秒前
未来文学家完成签到,获得积分20
1秒前
苌枫发布了新的文献求助10
2秒前
2秒前
正己烷完成签到 ,获得积分10
2秒前
甜美的芷发布了新的文献求助10
2秒前
科研小白发布了新的文献求助10
2秒前
xg发布了新的文献求助10
2秒前
化合物来完成签到,获得积分10
2秒前
tejing1158发布了新的文献求助10
2秒前
能干的棉花糖完成签到,获得积分10
3秒前
ctttt完成签到,获得积分10
3秒前
清圆527完成签到,获得积分10
3秒前
田様应助神勇的半莲采纳,获得10
4秒前
4秒前
4秒前
里苏特完成签到,获得积分10
4秒前
4秒前
南宫古伦完成签到 ,获得积分10
4秒前
今后应助aladi1011采纳,获得10
4秒前
zz完成签到,获得积分20
4秒前
小恶于完成签到 ,获得积分10
5秒前
asdfzxcv完成签到,获得积分0
5秒前
6秒前
6秒前
xcar完成签到,获得积分10
6秒前
7秒前
HJJHJH发布了新的文献求助10
7秒前
7秒前
单薄咖啡豆完成签到,获得积分10
7秒前
廖天佑完成签到,获得积分0
7秒前
ctttt发布了新的文献求助10
7秒前
阿辉发布了新的文献求助10
8秒前
8秒前
smt发布了新的文献求助10
8秒前
8秒前
zzy发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284