Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 政治学 政治 认识论 数学分析 哲学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芬芬完成签到,获得积分10
刚刚
小音。完成签到,获得积分10
1秒前
2秒前
大胆寒风发布了新的文献求助10
3秒前
WYQ发布了新的文献求助10
3秒前
4秒前
苏佳韩发布了新的文献求助10
4秒前
小杭76应助淡然的从霜采纳,获得10
4秒前
舒心的芮完成签到,获得积分20
4秒前
甜甜灵波完成签到,获得积分20
5秒前
5秒前
缥缈老九完成签到,获得积分10
5秒前
7秒前
北雁发布了新的文献求助10
7秒前
北雁发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
烟花应助鹿阿布采纳,获得10
8秒前
北雁发布了新的文献求助10
8秒前
北雁发布了新的文献求助10
8秒前
9秒前
北雁发布了新的文献求助10
9秒前
北雁发布了新的文献求助10
9秒前
ttsx完成签到,获得积分10
9秒前
北雁发布了新的文献求助10
9秒前
北雁发布了新的文献求助10
9秒前
10秒前
科研通AI6应助汪汪月王莹采纳,获得10
10秒前
yier发布了新的文献求助10
10秒前
qq发布了新的文献求助10
11秒前
没钱搞什么学术完成签到 ,获得积分10
13秒前
13秒前
ymxq关注了科研通微信公众号
15秒前
18秒前
18秒前
清秀的梦菡完成签到 ,获得积分10
18秒前
Akim应助yier采纳,获得10
19秒前
19秒前
斯文的捕完成签到 ,获得积分10
19秒前
张雨飞发布了新的文献求助10
21秒前
赘婿应助xul279采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172