Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 政治学 政治 认识论 数学分析 哲学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓涵柏完成签到,获得积分10
1秒前
LHJZS完成签到,获得积分20
1秒前
LeeJanJun发布了新的文献求助30
1秒前
Kenzonvay发布了新的文献求助10
2秒前
顾矜应助Gabriel1116采纳,获得10
2秒前
ren发布了新的文献求助10
3秒前
Wang发布了新的文献求助10
4秒前
勤恳的元绿完成签到 ,获得积分10
4秒前
Ava应助大树采纳,获得30
6秒前
7秒前
奋斗的夜山完成签到 ,获得积分10
8秒前
9秒前
缓缓发布了新的文献求助10
11秒前
HH发布了新的文献求助10
13秒前
852应助小猫爷爷采纳,获得10
14秒前
bkagyin应助LHJZS采纳,获得10
15秒前
皮卡丘完成签到,获得积分0
16秒前
超级冰露完成签到,获得积分10
18秒前
健壮的花瓣完成签到 ,获得积分10
19秒前
水知寒完成签到,获得积分10
24秒前
24秒前
小二郎应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
26秒前
Hello应助开心的西瓜采纳,获得10
27秒前
勤劳乘云完成签到,获得积分10
27秒前
萧水白应助HH采纳,获得10
29秒前
36456657应助HH采纳,获得10
29秒前
Ade发布了新的文献求助10
29秒前
30秒前
31秒前
善学以致用应助书记采纳,获得10
32秒前
Eternal完成签到,获得积分10
33秒前
科研通AI2S应助不吃奶酪采纳,获得10
35秒前
戚鹊发布了新的文献求助10
35秒前
35秒前
dachengzi发布了新的文献求助10
35秒前
38秒前
39秒前
小燕子发布了新的文献求助10
41秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325211
求助须知:如何正确求助?哪些是违规求助? 2955944
关于积分的说明 8578449
捐赠科研通 2633884
什么是DOI,文献DOI怎么找? 1441547
科研通“疑难数据库(出版商)”最低求助积分说明 667874
邀请新用户注册赠送积分活动 654575