清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 政治学 政治 认识论 数学分析 哲学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3927456843完成签到,获得积分10
22秒前
32秒前
孤独幻桃发布了新的文献求助10
46秒前
充电宝应助孤独幻桃采纳,获得30
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
2分钟前
孤独幻桃完成签到,获得积分10
3分钟前
4分钟前
Z可发布了新的文献求助10
4分钟前
5分钟前
洒家完成签到 ,获得积分10
6分钟前
SciGPT应助连安阳采纳,获得10
6分钟前
7分钟前
连安阳发布了新的文献求助10
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
耍酷平凡发布了新的文献求助30
7分钟前
无悔完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
稻子完成签到 ,获得积分10
9分钟前
dinglingling完成签到 ,获得积分10
9分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
9分钟前
CHEN完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
Arthur Zhu完成签到,获得积分10
9分钟前
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
熊猫胖胖WITH超人完成签到,获得积分20
11分钟前
11分钟前
耍酷平凡发布了新的文献求助10
11分钟前
11分钟前
ewxf2001发布了新的文献求助10
11分钟前
12分钟前
花园里的蒜完成签到 ,获得积分0
12分钟前
荔枝发布了新的文献求助20
12分钟前
ewxf2001完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108