亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 数学分析 哲学 认识论 政治 政治学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taku完成签到 ,获得积分10
1秒前
一号小玩家完成签到,获得积分10
2秒前
3秒前
7秒前
葡萄味的果茶完成签到 ,获得积分10
10秒前
10秒前
四壁雪发布了新的文献求助10
11秒前
寻道图强完成签到,获得积分0
11秒前
13秒前
执意完成签到,获得积分10
13秒前
18秒前
在水一方应助王伟采纳,获得10
18秒前
你嵙这个期刊没买完成签到,获得积分10
19秒前
胡图图啦啦完成签到 ,获得积分10
19秒前
23秒前
32秒前
32秒前
34秒前
36秒前
王伟发布了新的文献求助10
38秒前
走啊走发布了新的文献求助10
39秒前
39秒前
chenjingjing发布了新的文献求助10
43秒前
FashionBoy应助四壁雪采纳,获得10
44秒前
45秒前
fantianhui完成签到 ,获得积分10
46秒前
48秒前
捉迷藏完成签到,获得积分0
50秒前
50秒前
Criminology34应助Ginny采纳,获得10
50秒前
大胆的鲂发布了新的文献求助10
50秒前
51秒前
夕瑶摇啊发布了新的文献求助10
54秒前
cmc发布了新的文献求助10
56秒前
爱吃大米饭完成签到 ,获得积分10
59秒前
1分钟前
Orange应助cmc采纳,获得10
1分钟前
Moihan完成签到,获得积分10
1分钟前
香蕉觅云应助夕瑶摇啊采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418230
求助须知:如何正确求助?哪些是违规求助? 4533932
关于积分的说明 14142885
捐赠科研通 4450209
什么是DOI,文献DOI怎么找? 2441129
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079