Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 数学分析 哲学 认识论 政治 政治学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助星星采纳,获得10
刚刚
GRX1110发布了新的文献求助10
1秒前
yy完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
嘉梦完成签到,获得积分10
4秒前
酷波er应助凶狗睡大石采纳,获得10
4秒前
CAOHOU应助yy采纳,获得10
5秒前
SAD完成签到,获得积分20
5秒前
6秒前
慕青应助光亮的万天采纳,获得10
6秒前
哈士奇野猪完成签到,获得积分20
6秒前
7秒前
7秒前
美满的红酒完成签到 ,获得积分10
7秒前
西西发布了新的文献求助10
8秒前
BINGBING1230发布了新的文献求助30
8秒前
CodeCraft应助豆芽菜采纳,获得10
9秒前
可爱的函函应助TT001采纳,获得10
9秒前
9秒前
充电宝应助东明采纳,获得10
9秒前
10秒前
清秀晓筠完成签到,获得积分10
10秒前
11秒前
JamesPei应助birdy采纳,获得10
11秒前
李健应助月圆夜采纳,获得20
11秒前
陶l发布了新的文献求助10
13秒前
无花果应助BINGBING1230采纳,获得10
13秒前
13秒前
GPTea完成签到,获得积分0
14秒前
wang发布了新的文献求助10
14秒前
lxl1996完成签到,获得积分10
14秒前
赘婿应助吕亦寒采纳,获得10
15秒前
15秒前
流水完成签到,获得积分10
16秒前
冷静的莞发布了新的文献求助60
16秒前
16秒前
16秒前
方法完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146