Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 政治学 政治 认识论 数学分析 哲学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助忐忑的阑香采纳,获得10
1秒前
哈哈完成签到,获得积分10
1秒前
苏su关注了科研通微信公众号
1秒前
少主发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
安静发布了新的文献求助10
4秒前
上官若男应助PANYIAO采纳,获得10
5秒前
8秒前
tingting9发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Akim应助高手采纳,获得10
9秒前
9秒前
李健的小迷弟应助ZZZ采纳,获得10
9秒前
你好呀嘻嘻完成签到 ,获得积分10
9秒前
zwxzghgz完成签到,获得积分10
10秒前
hello发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
crazy完成签到,获得积分10
15秒前
咩咩羊发布了新的文献求助10
16秒前
易儿发布了新的文献求助10
16秒前
PANYIAO发布了新的文献求助10
17秒前
李彪完成签到,获得积分20
17秒前
小柒完成签到,获得积分10
18秒前
Lucas应助13223456采纳,获得10
19秒前
21秒前
chris发布了新的文献求助50
21秒前
简单面包完成签到,获得积分10
24秒前
踏实的老四完成签到,获得积分20
24秒前
26秒前
洪汉发布了新的文献求助50
28秒前
29秒前
30秒前
hahahah发布了新的文献求助20
31秒前
Hello应助猪猪hero采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136