Quantum-like implicit sentiment analysis with sememes knowledge

情绪分析 计算机科学 自然语言处理 人工智能 代表(政治) 质量(理念) 一般化 潜在语义分析 数学 数学分析 哲学 认识论 政治 政治学 法学
作者
Hongbin Wang,Minghui Hou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 120720-120720
标识
DOI:10.1016/j.eswa.2023.120720
摘要

Sentiment analysis, which can discriminate the sentiment tendency of subjective texts, is one of the important research works in the field of natural language processing. Sentiment analysis can be divided into explicit sentiment analysis and implicit sentiment analysis according to whether the text contains explicit sentiment words. Most of the current research work focuses on explicit sentiment analysis, while implicit sentiment analysis has become one of the most challenging research tasks because the sentiment characteristics are too implicit. In this paper, “Fused with Sememe Knowledge Quantum-like Chinese Implicit Sentiment Analysis (FSKQ)” is proposed, which introduces the density matrix in quantum theory and takes sememe, the smallest common sense semantic unit in natural language, as an external knowledge base to build a sememe-based density matrix. The matrix can be regarded as a complete knowledge system with strong generalization, which models the global information of the most fine-grained semantic knowledge. Its incorporation into the text vector results in a high quality of text representation, which effectively improves the performance of the model in Chinese implicit sentiment analysis. Ablation experiments and comparison experiments are conducted in the SMP ECISA2019 dataset, and the results show that the F1 score of the model is improved by 2.6% compared with the best model, which proves the effectiveness and superiority of the idea. In addition, in order to verify the performance of the proposed method in terms of text representation quality, it is also applied to existing models in the aspect-level sentiment analysis and event detection, and it is compared with the original model without using the idea and the baseline model on Twitter, Lap14, Rest14/15/16 and ACE2005 datasets. The results show that compared with the original model and the baseline model in this field, the model combined with the idea improves the accuracy and F1 score, which further proves the effectiveness, superiority and generalization of the FSKQ model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化学小白发布了新的文献求助10
刚刚
11111发布了新的文献求助10
刚刚
蘑菇丰收发布了新的文献求助10
1秒前
SciGPT应助玉米采纳,获得10
1秒前
1秒前
1秒前
2秒前
是啊余啊完成签到,获得积分10
2秒前
2秒前
Yxian发布了新的文献求助10
2秒前
Singularity应助dwd1w采纳,获得10
2秒前
自觉冷松发布了新的文献求助10
3秒前
Littboshi关注了科研通微信公众号
4秒前
寻风完成签到,获得积分10
4秒前
6秒前
6秒前
汉堡包应助biubiuu采纳,获得10
7秒前
cheng完成签到 ,获得积分10
8秒前
111发布了新的文献求助10
8秒前
科研通AI6.1应助勤奋以山采纳,获得30
8秒前
领导范儿应助木香采纳,获得10
9秒前
勋章完成签到 ,获得积分10
9秒前
菠菜发布了新的文献求助30
9秒前
9秒前
幸福幻巧应助语安采纳,获得10
10秒前
10秒前
10秒前
不想当牛马完成签到,获得积分10
11秒前
11秒前
Plasma992575完成签到,获得积分10
11秒前
11秒前
虚幻唯雪发布了新的文献求助10
11秒前
大模型应助流星采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
Unstoppable发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207