Process design, simulation and experimental studies of heteroazeotropic batch distillation for phenol dehydration

脱水 化学 蒸馏 苯酚 废水 间歇精馏 酚类 制浆造纸工业 色谱法 工艺工程 有机化学 废物管理 分馏 生物化学 工程类
作者
Chen Zhang,Yang Liu,Zhiqiang Gao,Long Huang,Jieming Xiong
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:195: 682-690 被引量:6
标识
DOI:10.1016/j.cherd.2023.05.062
摘要

Phenolic compounds are important groups of chemicals with many applications. Due to the strong affinity between phenols and water, the dehydration of phenolic compounds is often necessary and inevitable. The conventional method for phenol dehydration is the direct distillation without entrainers, leading to high phenol concentration (2–5 wt%) in wastewater and significant difficulty in subsequent wastewater treatment. In this work, heteroazeotropic batch distillation was studied by simulations and experiments to remove water from water-bearing phenols. By simulation, effects of entrainer type, operating pressure, number of theoretical stages, entrainer amount and decanter hold-up on dehydration efficiency were studied in detail. The results showed that the heteroazeotropic batch distillation using ethylbenzene as the entrainer yielded desirable dehydration results with many advantages. The wastewater generated in the dehydration process showed a much lower content of phenolic compounds than the direct distillation, greatly reducing the cost and difficulty of wastewater treatment. The energy consumption of heteroazeotropic distillation was also lower than the direct distillation. Batch distillation experiments were performed to validate the reliability of simulation results. The experimental results were in high agreement with simulations. The produced phenol products showed a water content of 470 ppm, and the content of phenolic compounds in wastewater was reduced to as low as 5.0 ppm. The heteroazeotropic batch distillation proposed in this study suggested an ideal strategy for phenol dehydration which is economically feasible and environmental-friendly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助慕山河采纳,获得10
刚刚
冷艳宛白发布了新的文献求助10
3秒前
大个应助ww采纳,获得20
5秒前
阿宝发布了新的文献求助10
5秒前
6秒前
小蘑菇应助Shibssjd采纳,获得10
6秒前
上上谦应助爱学习的YY采纳,获得10
7秒前
gtxgtx关注了科研通微信公众号
8秒前
王希澳完成签到,获得积分10
9秒前
王力完成签到 ,获得积分10
10秒前
金源元发布了新的文献求助10
10秒前
Freedom发布了新的文献求助10
12秒前
天天快乐应助Laaaaaa采纳,获得10
13秒前
13秒前
Llawite完成签到,获得积分20
15秒前
钦川完成签到,获得积分10
18秒前
ww完成签到,获得积分20
18秒前
18秒前
香蕉觅云应助杨果果采纳,获得10
21秒前
晴天向日葵完成签到,获得积分10
22秒前
马贝贝发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
24秒前
qqq发布了新的文献求助10
24秒前
子车茗应助hji采纳,获得30
25秒前
zzz完成签到,获得积分10
25秒前
鳗鱼语风完成签到,获得积分10
25秒前
公衍尚完成签到,获得积分20
26秒前
27秒前
Daidai完成签到,获得积分10
27秒前
狂野萤应助夜良采纳,获得10
28秒前
Shibssjd发布了新的文献求助10
29秒前
英俊丹寒完成签到 ,获得积分10
30秒前
song11完成签到,获得积分20
31秒前
负责吃饭发布了新的文献求助30
31秒前
酷酷以莲完成签到,获得积分10
31秒前
开放幻丝完成签到 ,获得积分10
32秒前
科研通AI2S应助我爱电催化采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643