清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning algorithm for predicting subacromial motion trajectory: Dynamic shoulder ultrasound analysis

计算机科学 人工智能 基本事实 卷积神经网络 运动(物理) 深度学习 计算机视觉 医学 算法
作者
Yi-Chung Shu,Yu‐Cheng Lo,Hsiao-Chi Chiu,Lan-Rong Chen,Che-Yu Lin,Wei‐Ting Wu,Levent Özçakar,Ke‐Vin Chang
出处
期刊:Ultrasonics [Elsevier]
卷期号:134: 107057-107057 被引量:4
标识
DOI:10.1016/j.ultras.2023.107057
摘要

Subacromial motion metrics can be extracted from dynamic shoulder ultrasonography, which is useful for identifying abnormal motion patterns in painful shoulders. However, frame-by-frame manual labeling of anatomical landmarks in ultrasound images is time consuming. The present study aims to investigate the feasibility of a deep learning algorithm for extracting subacromial motion metrics from dynamic ultrasonography. Dynamic ultrasound imaging was retrieved by asking 17 participants to perform cyclic shoulder abduction and adduction along the scapular plane, whereby the trajectory of the humeral greater tubercle (in relation to the lateral acromion) was depicted by the deep learning algorithm. Extraction of the subacromial motion metrics was conducted using a convolutional neural network (CNN) or a self-transfer learning-based (STL)-CNN with or without an autoencoder (AE). The mean absolute error (MAE) compared with the manually-labeled data (ground truth) served as the main outcome variable. Using eight-fold cross-validation, the average MAE was proven to be significantly higher in the group using CNN than in those using STL-CNN or STL-CNN+AE for the relative difference between the greater tubercle and lateral acromion on the horizontal axis. The MAE for the localization of the two aforementioned landmarks on the vertical axis also seemed to be enlarged in those using CNN compared with those using STL-CNN. In the testing dataset, the errors in relation to the ground truth for the minimal vertical acromiohumeral distance were 0.081-0.333 cm using CNN, compared with 0.002-0.007 cm using STL-CNN. We successfully demonstrated the feasibility of a deep learning algorithm for automatic detection of the greater tubercle and lateral acromion during dynamic shoulder ultrasonography. Our framework also demonstrated the capability of capturing the minimal vertical acromiohumeral distance, which is the most important indicator of subacromial motion metrics in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
14秒前
石乘云发布了新的文献求助10
17秒前
草木完成签到,获得积分10
24秒前
Singularity应助帮帮我好吗采纳,获得10
27秒前
大轩完成签到 ,获得积分10
44秒前
唐画完成签到,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
还单身的绝山完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Singularity完成签到,获得积分0
1分钟前
DQ1175完成签到 ,获得积分10
1分钟前
王治豪发布了新的文献求助10
1分钟前
小二郎应助帮帮我好吗采纳,获得10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
lovexa完成签到,获得积分10
2分钟前
3分钟前
arsenal完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助Jenny采纳,获得10
3分钟前
星辰大海应助帮帮我好吗采纳,获得10
3分钟前
vsvsgo完成签到,获得积分10
3分钟前
3分钟前
星辰大海应助帮帮我好吗采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
lyj完成签到 ,获得积分10
4分钟前
充电宝应助白华苍松采纳,获得10
4分钟前
房天川完成签到 ,获得积分10
4分钟前
5分钟前
简单的笑蓝完成签到 ,获得积分10
5分钟前
6分钟前
Jenny发布了新的文献求助10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999