认知
脑电图
人工智能
核(代数)
计算机科学
相关性(法律)
价(化学)
认知心理学
任务(项目管理)
心理学
机器学习
模式识别(心理学)
数学
政治学
法学
经济
组合数学
神经科学
物理
管理
量子力学
精神科
作者
Daniel Alexis Nieto-Mora,Stella Valencia,Natalia Trujillo,José David López,J. D. Martínez-Vargas
出处
期刊:Heliyon
[Elsevier]
日期:2023-06-01
卷期号:9 (6): e16927-e16927
标识
DOI:10.1016/j.heliyon.2023.e16927
摘要
EEG-ERP social-cognitive studies with healthy populations commonly fail to provide significant evidence due to low-quality data and the inherent similarity between groups. We propose a multiple kernel learning-based approach to enhance classification accuracy while keeping the traceability of the features (frequency bands or regions of interest) as a linear combination of kernels. These weights determine the relevance of each source of information, which is crucial for specialists. As a case study, we classify healthy ex-combatants of the Colombian armed conflict and civilians through a cognitive valence recognition task. Although previous works have shown accuracies below 80% with these groups, our proposal achieved an F1 score of 98%, revealing the most relevant bands and brain regions, which are the base for socio-cognitive trainings. With this methodology, we aim to contribute to standardizing EEG analyses and enhancing their statistics.
科研通智能强力驱动
Strongly Powered by AbleSci AI