Machine Learning Based Prediction of Enzymatic Degradation of Plastics Using Encoded Protein Sequence and Effective Feature Representation

背景(考古学) 代表(政治) 计算机科学 人工智能 序列(生物学) 机器学习 特征(语言学) 降级(电信) 生物 生物化学 古生物学 哲学 政治 法学 电信 语言学 政治学
作者
Renjing Jiang,Lanyu Shang,Ruohan Wang,Dong Wang,Na Wei
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (7): 557-564 被引量:21
标识
DOI:10.1021/acs.estlett.3c00293
摘要

Enzyme biocatalysis for plastic treatment and recycling is an emerging field of growing interest. However, it is challenging and time-consuming to identify plastic-degrading enzymes with desirable functionality, given the large number of putative enzyme sequences. There is a critical need to develop an effective approach to accurately predict the enzyme activity in degrading different types of plastics. In this study, we developed a machine-learning-based plastic enzymatic degradation (PED) framework to predict the ability of an enzyme to degrade plastics of interest by exploring and recognizing hidden patterns in protein sequences. A data set integrating information from a wide range of experimentally verified enzymes and various common plastic substrates was created. A new context-aware enzyme sequence representation (CESR) mechanism was developed to learn the abundant contextual information in enzyme sequences, and feature extraction was performed for enzymes at both the amino acid level and global sequence level. Thirteen machine learning classification algorithms were compared, and XGBoost was identified as the best-performing algorithm. PED achieved an overall accuracy of 90.2% and outperformed sequence-based protein classification models from the existing literature. Furthermore, important enzyme features in plastic degradation were identified and comprehensively interpreted. This study demonstrated a new tool for the prediction and discovery of plastic-degrading enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowen发布了新的文献求助10
刚刚
ScarlettU完成签到,获得积分10
1秒前
冷艳后妈完成签到,获得积分10
2秒前
2秒前
3秒前
orixero应助一朵约尔采纳,获得10
4秒前
mary611发布了新的文献求助10
4秒前
Owen应助郭郝采纳,获得10
4秒前
kuikichu完成签到,获得积分10
5秒前
微笑淡忘完成签到,获得积分20
5秒前
慕青应助难过酸奶采纳,获得10
6秒前
天天快乐应助李闻闻采纳,获得10
6秒前
hign发布了新的文献求助10
6秒前
共享精神应助夜凉如水采纳,获得10
6秒前
6秒前
xiaowen完成签到,获得积分10
7秒前
123完成签到 ,获得积分10
7秒前
7秒前
雪凝清霜发布了新的文献求助10
8秒前
summer完成签到,获得积分10
8秒前
琂当归完成签到,获得积分10
8秒前
爆米花应助阔达的太阳采纳,获得10
10秒前
开朗的抽屉完成签到 ,获得积分10
10秒前
11秒前
WindChaser完成签到,获得积分10
11秒前
12秒前
taco发布了新的文献求助10
12秒前
米兰完成签到,获得积分10
13秒前
renxuda发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
16秒前
大苹果完成签到,获得积分10
16秒前
yy发布了新的文献求助10
17秒前
跳跃的邪欢完成签到,获得积分10
17秒前
18秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192262
求助须知:如何正确求助?哪些是违规求助? 4375259
关于积分的说明 13624367
捐赠科研通 4229578
什么是DOI,文献DOI怎么找? 2320065
邀请新用户注册赠送积分活动 1318422
关于科研通互助平台的介绍 1268650