生物
促炎细胞因子
旁观者效应
利什曼原虫
利什曼原虫
下调和上调
寄生虫寄主
炎症
细胞生物学
皮肤利什曼病
免疫学
利什曼病
基因
遗传学
计算机科学
万维网
作者
Gopinath Venugopal,Jordan T. Bird,Hayden Roys,Anne K. Bowlin,Lucy Fry,Stephanie D. Byrum,Tiffany Weinkopff
摘要
Cutaneous leishmaniasis is caused by infection with the protozoan parasite Leishmania, which resides intracellularly in dermal macrophages (Mø), producing lesions. The skin lesions are characterized by proinflammatory cytokines and growth factors as well as inflammatory hypoxia, creating a stressful microenvironment for Mø. Of importance, not all Mø in lesions harbor parasites. To distinguish the influence of the parasite from the inflammatory microenvironment after Leishmania major (LM) infection on the Mø, we performed single-cell RNA sequencing and compared Mø associated with LM transcripts (or 'infected' Mø) with Mø not associated with LM transcripts (or 'bystander' Mø) within the lesions. Our findings show coordinated lysosomal expression and regulation signaling with increased cathepsin and H+-ATPase transcripts are upregulated in infected compared with bystander Mø. Additionally, eukaryotic initiation factor 2 (EIF2) signaling is downregulated in infected compared with bystander Mø, which includes many small and large ribosomal subunit (Rps and Rpl) transcripts being decreased in Mø harboring parasites. Furthermore, we also find EIF2 signaling including EIF, Rps, and Rpl transcripts being downregulated in bystander Mø compared with Mø from naïve skin. These data suggest that both the parasite and the inflammatory host microenvironment affect the transcription of ribosomal machinery in lesional Mø, thereby potentially affecting the ability of these cells to perform translation, protein synthesis, and thus function. Altogether, these results suggest that both the parasite and host inflammatory microenvironment independently drive transcriptional remodeling in Mø during LM infection in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI