Parameter Extraction of Solar Photovoltaic Modules Using a Novel Bio-Inspired Swarm Intelligence Optimisation Algorithm

光伏系统 算法 均方误差 粒子群优化 计算机科学 功率(物理) 数学 工程类 统计 物理 电气工程 量子力学
作者
Ram Ishwar Vais,Kuldeep Sahay,Tirumalasetty Chiranjeevi,Ramesh Devarapalli,Łukasz Knypiński
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (10): 8407-8407 被引量:2
标识
DOI:10.3390/su15108407
摘要

For extracting the equivalent circuit parameters of solar photovoltaic (PV) panels, a unique bio-inspired swarm intelligence optimisation algorithm (OA) called the dandelion optimisation algorithm (DOA) is proposed in this study. The suggested approach has been used to analyse well-known single-diode (SD) and double-diode (DD) PV models for several PV module types, including monocrystalline SF430M, polycrystalline SG350P, and thin-film Shell ST40. The DOA is adopted by minimizing the sum of the squares of the errors at three locations (short-circuit, open-circuit, and maximum power points). Different runs are conducted to analyse the nature of the extracted parameters and the V–I characteristics of the PV panels under consideration. Obtained results show that for Mono SF430M, the error in the SD model is 2.5118e-19, and the error in the DD model is 2.0463e-22; for Poly SG350P, the error in the SD model is 9.4824e-21, and the error in the DD model is 2.1134e-20; for thin-film Shell ST40, the error in the SD model is 1.7621e-20, and the error in DD model is 7.9361e-22. The parameters produced from the suggested method yield the least amount of error across several executions, which suggests its better implementation in the current situation. Furthermore, statistical analysis of the SD and DD models using DOA is also carried out and compared with two hybrid OAs in the literature. Statistical results show that the standard deviation, sum, mean, and variance of various PV panels using DOA are lower compared to those of the other two hybrid OAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻凝云完成签到,获得积分20
刚刚
11关闭了11文献求助
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
cyxismintgreen完成签到,获得积分10
5秒前
7秒前
悲凉的新筠完成签到,获得积分10
7秒前
A2QD发布了新的文献求助10
7秒前
赘婿应助dili827采纳,获得10
8秒前
CipherSage应助唠叨的秋蝶采纳,获得10
8秒前
郭首席完成签到,获得积分10
8秒前
8秒前
落雨冥完成签到,获得积分10
9秒前
9秒前
10秒前
xgx984发布了新的文献求助10
10秒前
10秒前
砂浆黏你发布了新的文献求助10
10秒前
10秒前
zhang值完成签到,获得积分10
10秒前
tutuee完成签到,获得积分10
11秒前
LJB完成签到 ,获得积分10
11秒前
12秒前
科研通AI2S应助A2QD采纳,获得10
12秒前
13秒前
亿万斯年应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
ZhaohuaXie应助科研通管家采纳,获得10
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934363
求助须知:如何正确求助?哪些是违规求助? 4202270
关于积分的说明 13056674
捐赠科研通 3976576
什么是DOI,文献DOI怎么找? 2179041
邀请新用户注册赠送积分活动 1195369
关于科研通互助平台的介绍 1106695