已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Lippincott Williams & Wilkins]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰雪痕发布了新的文献求助10
1秒前
3秒前
kk完成签到,获得积分10
4秒前
赵柯宇发布了新的文献求助10
4秒前
5秒前
眼睛大的胡萝卜完成签到 ,获得积分10
5秒前
情怀应助凹凸先森采纳,获得10
5秒前
8秒前
ghhhn发布了新的文献求助10
9秒前
9秒前
资山雁完成签到 ,获得积分10
9秒前
焱焱不忘完成签到 ,获得积分0
12秒前
杨远杰完成签到 ,获得积分10
12秒前
hulahula完成签到 ,获得积分10
12秒前
读研暴躁哥关注了科研通微信公众号
14秒前
14秒前
呆呆完成签到 ,获得积分10
14秒前
乔一发布了新的文献求助10
15秒前
17秒前
17秒前
呼啦呼啦完成签到 ,获得积分10
18秒前
梦想里发布了新的文献求助10
18秒前
FashionBoy应助jiayo采纳,获得10
19秒前
ruhemann发布了新的文献求助10
20秒前
Ying发布了新的文献求助10
22秒前
23秒前
乔一完成签到,获得积分20
23秒前
爆米花应助乔一采纳,获得10
29秒前
完美世界应助梦想里采纳,获得10
29秒前
酷波er应助ruhemann采纳,获得10
29秒前
stark完成签到,获得积分10
29秒前
寇博翔发布了新的文献求助10
30秒前
科研通AI6应助Ying采纳,获得10
30秒前
潇洒的马里奥完成签到,获得积分10
31秒前
soar完成签到 ,获得积分10
31秒前
31秒前
常绝山完成签到 ,获得积分10
32秒前
陈欣瑶完成签到 ,获得积分10
34秒前
ljn完成签到 ,获得积分10
34秒前
Duang完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944379
求助须知:如何正确求助?哪些是违规求助? 4209328
关于积分的说明 13085062
捐赠科研通 3988891
什么是DOI,文献DOI怎么找? 2183953
邀请新用户注册赠送积分活动 1199314
关于科研通互助平台的介绍 1112211