Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Oxford University Press]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小二郎应助一只滚滚猫采纳,获得10
2秒前
2秒前
fj完成签到,获得积分10
2秒前
YYY发布了新的文献求助10
3秒前
CZ发布了新的文献求助10
4秒前
阿静发布了新的文献求助10
4秒前
苏子寒发布了新的文献求助10
4秒前
pride发布了新的文献求助30
5秒前
ZHAO完成签到,获得积分20
5秒前
5秒前
淋雨的猪发布了新的文献求助80
6秒前
大个应助多情尔珍采纳,获得10
6秒前
慕青应助多情尔珍采纳,获得10
6秒前
汤圆好吃完成签到,获得积分10
6秒前
充电宝应助2856256105采纳,获得10
6秒前
孙ym完成签到,获得积分10
6秒前
Mia完成签到,获得积分10
6秒前
nml关闭了nml文献求助
7秒前
王井彦发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
深情的荧发布了新的文献求助10
8秒前
阳光完成签到 ,获得积分10
10秒前
醉熏的天薇完成签到,获得积分10
11秒前
顾矜应助创不可贴采纳,获得10
11秒前
jiaman1031完成签到,获得积分10
11秒前
11秒前
李JJ完成签到,获得积分10
11秒前
乾贝完成签到,获得积分20
12秒前
13秒前
金平卢仙发布了新的文献求助10
13秒前
深夜诗人完成签到,获得积分10
13秒前
pride完成签到,获得积分10
13秒前
王子完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243