Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Lippincott Williams & Wilkins]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
聪明胡图图完成签到,获得积分10
1秒前
桐桐应助哈哈哈哈哈采纳,获得10
2秒前
3秒前
虬江学者发布了新的文献求助10
3秒前
3秒前
Lumos完成签到,获得积分10
3秒前
3秒前
竹筏过海应助safeheart采纳,获得30
3秒前
华仔应助苦哈哈采纳,获得10
4秒前
StuXuhao发布了新的文献求助30
4秒前
王崇然发布了新的文献求助20
5秒前
hmx发布了新的文献求助10
5秒前
喜静完成签到,获得积分10
5秒前
6秒前
罗又柔完成签到,获得积分10
6秒前
承序完成签到,获得积分10
6秒前
华仔应助火星上莛采纳,获得10
6秒前
6秒前
7秒前
SilentRP完成签到,获得积分10
8秒前
8秒前
8秒前
石夜一觞发布了新的文献求助30
9秒前
m13965062353发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
李爱国应助承序采纳,获得10
11秒前
可乐完成签到 ,获得积分10
11秒前
充电宝应助StuXuhao采纳,获得10
11秒前
顺心的巨人完成签到,获得积分10
11秒前
11秒前
沫沫发布了新的文献求助10
11秒前
打打应助Kristine采纳,获得10
12秒前
螺丝老人发布了新的文献求助10
12秒前
12秒前
虬江学者完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979040
求助须知:如何正确求助?哪些是违规求助? 3522910
关于积分的说明 11215440
捐赠科研通 3260392
什么是DOI,文献DOI怎么找? 1799938
邀请新用户注册赠送积分活动 878751
科研通“疑难数据库(出版商)”最低求助积分说明 807060