Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Oxford University Press]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BenjaminBrain完成签到,获得积分10
刚刚
2秒前
2秒前
sjfczyh发布了新的文献求助10
3秒前
QIQI发布了新的文献求助10
4秒前
5秒前
干净的夜天完成签到 ,获得积分10
5秒前
5秒前
NexusExplorer应助pp采纳,获得10
6秒前
6秒前
6秒前
万能图书馆应助younghippo采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
chai发布了新的文献求助10
8秒前
子川完成签到,获得积分10
9秒前
Gauss应助qhuzhl采纳,获得30
9秒前
晶晶完成签到,获得积分10
9秒前
坤坤大白完成签到,获得积分10
9秒前
10秒前
Juid应助柔弱静珊采纳,获得20
10秒前
10秒前
大大完成签到,获得积分10
10秒前
Breath发布了新的文献求助30
10秒前
领导范儿应助沉默的倔驴采纳,获得30
11秒前
科研通AI6应助魏恒胜采纳,获得10
12秒前
插线板发布了新的文献求助10
12秒前
12秒前
run发布了新的文献求助50
12秒前
高贵逍遥完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565965
求助须知:如何正确求助?哪些是违规求助? 4650928
关于积分的说明 14693928
捐赠科研通 4592971
什么是DOI,文献DOI怎么找? 2519841
邀请新用户注册赠送积分活动 1492206
关于科研通互助平台的介绍 1463382