Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Oxford University Press]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baby的跑男完成签到,获得积分10
刚刚
Faith完成签到,获得积分10
1秒前
1秒前
Mercurius完成签到,获得积分10
2秒前
2秒前
2秒前
ganzhongxin完成签到,获得积分10
2秒前
12356完成签到,获得积分10
2秒前
3秒前
今后应助白华苍松采纳,获得10
3秒前
跳跃乘风发布了新的文献求助20
3秒前
不舍天真发布了新的文献求助20
4秒前
坚强的樱发布了新的文献求助10
4秒前
温暖以蓝发布了新的文献求助10
4秒前
4秒前
wanci应助幸福胡萝卜采纳,获得10
4秒前
4秒前
Ych发布了新的文献求助10
4秒前
gjy完成签到,获得积分10
5秒前
vision完成签到,获得积分10
5秒前
小小发布了新的文献求助10
5秒前
Katie完成签到,获得积分10
5秒前
LT发布了新的文献求助10
5秒前
6秒前
科研人完成签到,获得积分10
6秒前
FashionBoy应助彭彭采纳,获得10
6秒前
赤邪发布了新的文献求助10
7秒前
Owen应助lwei采纳,获得10
7秒前
shelly0621给shelly0621的求助进行了留言
7秒前
青木蓝完成签到,获得积分10
7秒前
7秒前
迅速泽洋完成签到,获得积分10
8秒前
dan1029完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
李繁蕊发布了新的文献求助10
8秒前
9秒前
9秒前
隐形曼青应助hjj采纳,获得10
9秒前
susu完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762