Validation of Machine Learning–Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video

医学 注释 手术器械 数据集 帧(网络) 集合(抽象数据类型) 人工智能 腹腔镜胆囊切除术 计算机科学 胆囊切除术 医学物理学 情报检索 计算机视觉 外科 电信 程序设计语言
作者
Nicholas Markarian,Guillaume Kugener,Dhiraj J. Pangal,Vyom Unadkat,Aditya Sinha,Yichao Zhu,Arman Roshannai,Justin P. Chan,Andrew J. Hung,Bozena Wrobel,Animashree Anandkumar,Gabriel Zada,Daniel A. Donoho
出处
期刊:Operative Neurosurgery [Oxford University Press]
被引量:5
标识
DOI:10.1227/ons.0000000000000274
摘要

Intraoperative tool movement data have been demonstrated to be clinically useful in quantifying surgical performance. However, collecting this information from intraoperative video requires laborious hand annotation. The ability to automatically annotate tools in surgical video would advance surgical data science by eliminating a time-intensive step in research.To identify whether machine learning (ML) can automatically identify surgical instruments contained within neurosurgical video.A ML model which automatically identifies surgical instruments in frame was developed and trained on multiple publicly available surgical video data sets with instrument location annotations. A total of 39 693 frames from 4 data sets were used (endoscopic endonasal surgery [EEA] [30 015 frames], cataract surgery [4670], laparoscopic cholecystectomy [2532], and microscope-assisted brain/spine tumor removal [2476]). A second model trained only on EEA video was also developed. Intraoperative EEA videos from YouTube were used for test data (3 videos, 1239 frames).The YouTube data set contained 2169 total instruments. Mean average precision (mAP) for instrument detection on the YouTube data set was 0.74. The mAP for each individual video was 0.65, 0.74, and 0.89. The second model trained only on EEA video also had an overall mAP of 0.74 (0.62, 0.84, and 0.88 for individual videos). Development costs were $130 for manual video annotation and under $100 for computation.Surgical instruments contained within endoscopic endonasal intraoperative video can be detected using a fully automated ML model. The addition of disparate surgical data sets did not improve model performance, although these data sets may improve generalizability of the model in other use cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何女士发布了新的文献求助10
刚刚
jojo完成签到,获得积分10
1秒前
虚心的芷蝶完成签到,获得积分10
1秒前
FashionBoy应助小丸子采纳,获得50
3秒前
bkagyin应助wpeng采纳,获得10
7秒前
zhuyan完成签到,获得积分10
8秒前
19完成签到,获得积分0
10秒前
不怕考试的赵无敌完成签到 ,获得积分10
13秒前
CodeCraft应助何女士采纳,获得10
13秒前
小巧的新波完成签到,获得积分10
15秒前
无花果应助Elvira采纳,获得10
18秒前
科研八戒完成签到 ,获得积分10
18秒前
dahong完成签到 ,获得积分10
18秒前
江小鱼在查文献完成签到,获得积分10
19秒前
19秒前
wpeng完成签到,获得积分10
21秒前
钴酸锂完成签到 ,获得积分10
21秒前
king完成签到,获得积分10
21秒前
23秒前
wpeng发布了新的文献求助10
24秒前
干净的新梅完成签到,获得积分10
25秒前
26秒前
27秒前
冷冷暴力完成签到,获得积分10
27秒前
科研八戒发布了新的文献求助10
28秒前
28秒前
munire发布了新的文献求助10
33秒前
34秒前
35秒前
嗯哼应助爱科研的小导航采纳,获得10
35秒前
菠萝炒饭发布了新的文献求助10
36秒前
38秒前
蟒玉朝天完成签到 ,获得积分10
38秒前
40秒前
kzg完成签到 ,获得积分10
40秒前
40秒前
华仔应助xzl采纳,获得10
41秒前
42秒前
苯二氮卓发布了新的文献求助10
43秒前
45秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339611
求助须知:如何正确求助?哪些是违规求助? 2967543
关于积分的说明 8630284
捐赠科研通 2647087
什么是DOI,文献DOI怎么找? 1449480
科研通“疑难数据库(出版商)”最低求助积分说明 671418
邀请新用户注册赠送积分活动 660337