GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks

计算机科学 图形 卷积(计算机科学) 节点(物理) 异构网络 嵌入 药物靶点 药品 图嵌入 人工智能 数据挖掘 理论计算机科学 人工神经网络 医学 药理学 电信 无线网络 无线 结构工程 工程类
作者
Wei Wang,Shihao Liang,Mengxue Yu,Dong Liu,HongJun Zhang,Xianfang Wang,Yun Zhou
出处
期刊:Methods [Elsevier]
卷期号:206: 101-107 被引量:9
标识
DOI:10.1016/j.ymeth.2022.08.016
摘要

Determining the interaction of drug and target plays a key role in the process of drug development and discovery. The calculation methods can predict new interactions and speed up the process of drug development. In recent studies, the network-based approaches have been proposed to predict drug-target interactions. However, these methods cannot fully utilize the node information from heterogeneous networks. Therefore, we propose a method based on heterogeneous graph convolutional neural network for drug-target interaction prediction, GCHN-DTI (Predicting drug-target interactions by graph convolution on heterogeneous net-works), to predict potential DTIs. GCHN-DTI integrates network information from drug-target interactions, drug-drug interactions, drug-similarities, target-target interactions, and target-similarities. Then, the graph convolution operation is used in the heterogeneous network to obtain the node embedding of the drugs and the targets. Furthermore, we incorporate an attention mechanism between graph convolutional layers to combine node embedding from each layer. Finally, the drug-target interaction score is predicted based on the node embedding of the drugs and the targets. Our model uses fewer network types and achieves higher prediction performance. In addition, the prediction performance of the model will be significantly improved on the dataset with a higher proportion of positive samples. The experimental evaluations show that GCHN-DTI outperforms several state-of-the-art prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hunting完成签到,获得积分10
1秒前
1秒前
共享精神应助潇潇雨歇采纳,获得10
2秒前
寂寞的寄文完成签到,获得积分10
2秒前
爱静静应助大力的无声采纳,获得10
3秒前
和平使命应助大力的无声采纳,获得10
3秒前
4秒前
jessie发布了新的文献求助10
4秒前
小马甲应助寂寞的寄文采纳,获得10
7秒前
8秒前
岸在海的深处完成签到 ,获得积分10
9秒前
xiao应助小吴采纳,获得10
10秒前
西溪完成签到 ,获得积分10
10秒前
11秒前
pi发布了新的文献求助10
12秒前
hunting发布了新的文献求助10
12秒前
12秒前
jujijuji应助Anquan采纳,获得10
12秒前
13秒前
13秒前
bkagyin应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
王黎应助科研通管家采纳,获得30
15秒前
李爱国应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Neko应助科研通管家采纳,获得20
16秒前
16秒前
JiangHb完成签到,获得积分10
17秒前
18秒前
18秒前
Jian发布了新的文献求助20
18秒前
lingjuanwu发布了新的文献求助10
18秒前
南鸢完成签到 ,获得积分10
19秒前
今后应助wbn1212采纳,获得10
19秒前
光电彭于晏完成签到,获得积分10
19秒前
丰盛的煎饼应助LiShin采纳,获得10
20秒前
大胆的凡儿完成签到 ,获得积分10
20秒前
蝴蝶发布了新的文献求助10
24秒前
槐序发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851