Mapping of antibody epitopes based on docking and homology modeling

同源建模 对接(动物) 表位 计算生物学 大分子对接 抗原 抗体 表位定位 计算机科学 蛋白质结构 化学 生物 生物化学 遗传学 医学 护理部
作者
Israel Desta,Sergei Kotelnikov,George Jones,Usman Ghani,Mikhail Abyzov,Yaroslav Kholodov,Daron M. Standley,Maria Sabitova,Dmitri Beglov,Sándor Vajda,Dima Kozakov
出处
期刊:Proteins [Wiley]
卷期号:91 (2): 171-182 被引量:18
标识
DOI:10.1002/prot.26420
摘要

Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡菠萝完成签到 ,获得积分10
2秒前
麦子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
默默莫莫完成签到 ,获得积分10
5秒前
橘生淮南完成签到,获得积分10
9秒前
韭菜盒子完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
小药童完成签到,获得积分0
19秒前
hj123完成签到,获得积分10
24秒前
三石完成签到 ,获得积分10
25秒前
她的城完成签到,获得积分0
29秒前
Ha完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
39秒前
木雨亦潇潇完成签到,获得积分10
41秒前
青木完成签到 ,获得积分10
45秒前
Orange应助王蕊采纳,获得10
46秒前
完犊子完成签到,获得积分10
49秒前
失眠的笑翠完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
you完成签到,获得积分10
53秒前
nannan完成签到 ,获得积分10
54秒前
55秒前
36456657完成签到,获得积分0
56秒前
王吉萍完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
王蕊发布了新的文献求助10
1分钟前
WW完成签到 ,获得积分10
1分钟前
jw完成签到,获得积分10
1分钟前
1分钟前
77完成签到 ,获得积分10
1分钟前
1分钟前
lan发布了新的文献求助10
1分钟前
聪明的二休完成签到,获得积分10
1分钟前
易水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
allzzwell完成签到 ,获得积分10
1分钟前
方圆完成签到 ,获得积分10
1分钟前
Dsunflower完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839