Mapping of antibody epitopes based on docking and homology modeling

同源建模 对接(动物) 表位 计算生物学 大分子对接 抗原 抗体 表位定位 计算机科学 蛋白质结构 化学 生物 生物化学 遗传学 医学 护理部
作者
Israel Desta,Sergei Kotelnikov,George Jones,Usman Ghani,Mikhail Abyzov,Yaroslav Kholodov,Daron M. Standley,Maria Sabitova,Dmitri Beglov,Sándor Vajda,Dima Kozakov
出处
期刊:Proteins [Wiley]
卷期号:91 (2): 171-182 被引量:18
标识
DOI:10.1002/prot.26420
摘要

Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助孔凡悦采纳,获得10
刚刚
1秒前
1秒前
1秒前
cometx完成签到 ,获得积分10
2秒前
135发布了新的文献求助10
2秒前
2秒前
椰椰鲨发布了新的文献求助30
3秒前
张凤发布了新的文献求助10
4秒前
4秒前
ZYZ完成签到,获得积分10
4秒前
yxf完成签到,获得积分10
4秒前
5秒前
谦让R发布了新的文献求助10
5秒前
万能图书馆应助z69823采纳,获得30
7秒前
Time发布了新的文献求助10
7秒前
善学以致用应助李春丽采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
浮游应助傲娇的觅翠采纳,获得10
10秒前
ymr发布了新的文献求助10
11秒前
孔凡悦发布了新的文献求助10
13秒前
13秒前
谦让R完成签到,获得积分10
14秒前
大模型应助Lven采纳,获得10
14秒前
15秒前
思源应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979618
求助须知:如何正确求助?哪些是违规求助? 4232294
关于积分的说明 13182934
捐赠科研通 4023273
什么是DOI,文献DOI怎么找? 2201279
邀请新用户注册赠送积分活动 1213717
关于科研通互助平台的介绍 1129916