清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mapping of antibody epitopes based on docking and homology modeling

同源建模 对接(动物) 表位 计算生物学 大分子对接 抗原 抗体 表位定位 计算机科学 蛋白质结构 化学 生物 生物化学 遗传学 医学 护理部
作者
Israel Desta,Sergei Kotelnikov,George Jones,Usman Ghani,Mikhail Abyzov,Yaroslav Kholodov,Daron M. Standley,Maria Sabitova,Dmitri Beglov,Sándor Vajda,Dima Kozakov
出处
期刊:Proteins [Wiley]
卷期号:91 (2): 171-182 被引量:18
标识
DOI:10.1002/prot.26420
摘要

Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
3秒前
29秒前
MTF完成签到 ,获得积分10
35秒前
39秒前
44秒前
赘婿应助moonsea0415采纳,获得10
57秒前
任性的紫翠完成签到,获得积分10
1分钟前
活泼雪碧完成签到 ,获得积分10
1分钟前
1分钟前
moonsea0415发布了新的文献求助10
1分钟前
moonsea0415完成签到,获得积分10
1分钟前
Joins_Su完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
Kevin发布了新的文献求助10
2分钟前
大个应助紧张的铃铛采纳,获得10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
zakaria完成签到,获得积分10
3分钟前
紧张的铃铛完成签到,获得积分10
3分钟前
科研通AI6应助紧张的铃铛采纳,获得80
3分钟前
merrylake完成签到 ,获得积分10
3分钟前
3分钟前
Akim应助重庆森林采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
重庆森林发布了新的文献求助30
4分钟前
邢夏之完成签到 ,获得积分0
4分钟前
重庆森林完成签到,获得积分10
4分钟前
5分钟前
PeterLin完成签到,获得积分10
5分钟前
科研通AI6应助PeterLin采纳,获得10
5分钟前
Asofi完成签到,获得积分10
5分钟前
lulululululu发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723