Mapping of antibody epitopes based on docking and homology modeling

同源建模 对接(动物) 表位 计算生物学 大分子对接 抗原 抗体 表位定位 计算机科学 蛋白质结构 化学 生物 生物化学 遗传学 医学 护理部
作者
Israel Desta,Sergei Kotelnikov,George Jones,Usman Ghani,Mikhail Abyzov,Yaroslav Kholodov,Daron M. Standley,Maria Sabitova,Dmitri Beglov,Sándor Vajda,Dima Kozakov
出处
期刊:Proteins [Wiley]
卷期号:91 (2): 171-182 被引量:18
标识
DOI:10.1002/prot.26420
摘要

Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的衬衫应助yKkkkkk采纳,获得10
刚刚
小豆包科研冲刺者完成签到,获得积分10
刚刚
黄饱饱完成签到,获得积分10
1秒前
1秒前
传奇3应助CO2采纳,获得10
2秒前
3秒前
称心乐枫完成签到,获得积分10
4秒前
4秒前
22发布了新的文献求助10
4秒前
berry发布了新的文献求助10
4秒前
kingmin应助毛慢慢采纳,获得10
5秒前
完美世界应助顺利鱼采纳,获得10
6秒前
搜集达人应助招财不肥采纳,获得10
7秒前
sweetbearm应助李秋静采纳,获得10
7秒前
Michael_li完成签到,获得积分10
7秒前
whs完成签到,获得积分10
9秒前
科研通AI5应助xlj采纳,获得10
10秒前
再干一杯发布了新的文献求助10
10秒前
11秒前
满意的天完成签到 ,获得积分10
11秒前
luoshiwen完成签到,获得积分10
11秒前
落寞的觅柔完成签到,获得积分10
13秒前
14秒前
LUNWENREQUEST发布了新的文献求助10
14秒前
15秒前
16秒前
123cxj完成签到,获得积分10
19秒前
CO2发布了新的文献求助10
19秒前
summer发布了新的文献求助10
19秒前
20秒前
Xx.发布了新的文献求助10
20秒前
大大关注了科研通微信公众号
20秒前
稚祎完成签到 ,获得积分10
20秒前
20秒前
CodeCraft应助东东采纳,获得10
21秒前
22秒前
叽里咕噜完成签到 ,获得积分10
23秒前
田様应助zccc采纳,获得10
24秒前
隐形的雁完成签到,获得积分10
24秒前
追寻的秋玲完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808