The use of various statistical methods for authenticity and detection of adulteration in fish and seafood

计算机科学 数据科学 数据挖掘 生物 渔业
作者
Konstantinos V. Kotsanopoulos,Petros V. Martsikalis,Georgios A. Gkafas,Athanasios Exadactylos
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:64 (6): 1553-1571 被引量:5
标识
DOI:10.1080/10408398.2022.2117786
摘要

Various methodologies including genetic analyses, morphometrics, proteomics, lipidomics, metabolomics, etc. are now used or being developed to authenticate fish and seafood. Such techniques usually lead to the generation of enormous amounts of data. The analysis and interpretation of this information can be particularly challenging. Statistical techniques are therefore commonly used to assist in analyzing these data, visualizing trends and differences and extracting conclusions. This review article aims at presenting and discussing statistical methods used in studies on fish and seafood authenticity and adulteration, allowing researchers to consider their options based on previous successes/failures but also offering some recommendations about the future of such techniques. Techniques such as PCA, AMOVA and FST statistics, that allow the differentiation of genetic groups, or techniques such as MANOVA that allow large data sets of morphometric characteristics or elemental differences to be analyzed are discussed. Furthermore, methods such as cluster analysis, DFA, CVA, CDA and heatmaps/Circos plots that allow samples to be differentiated based on their geographical origin are also reviewed and their advantages and disadvantages as found in past studies are given. Finally, mathematical simulations and modeling are presented in a detailed review of studies using them, together with their advantages and limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Shadi采纳,获得10
1秒前
羽雨完成签到 ,获得积分10
2秒前
5秒前
脑洞疼应助小黄加油鸭采纳,获得10
5秒前
张美美完成签到,获得积分10
5秒前
小白应助Someone采纳,获得30
7秒前
8秒前
大胆的蛋挞完成签到,获得积分10
9秒前
殷勤的紫槐发布了新的文献求助100
9秒前
KAI完成签到,获得积分20
9秒前
CodeCraft应助查丽采纳,获得10
9秒前
斯文败类应助橘络采纳,获得10
9秒前
xiaxiao应助清新的羽毛采纳,获得100
11秒前
科研菜鸟完成签到,获得积分10
12秒前
淞33发布了新的文献求助10
12秒前
13秒前
13秒前
小黄加油鸭完成签到,获得积分20
13秒前
14秒前
钮小童发布了新的文献求助10
15秒前
地三鲜完成签到,获得积分10
15秒前
gishisei完成签到,获得积分10
15秒前
15秒前
17秒前
zzc发布了新的文献求助10
17秒前
Lotus给Lotus的求助进行了留言
19秒前
mango发布了新的文献求助10
19秒前
活泼菠萝完成签到,获得积分10
20秒前
20秒前
哦o发布了新的文献求助10
20秒前
高文强完成签到,获得积分10
20秒前
煤球完成签到,获得积分10
22秒前
橘络发布了新的文献求助10
22秒前
土星发布了新的文献求助10
23秒前
科研通AI2S应助老实友蕊采纳,获得10
24秒前
小小发布了新的文献求助30
25秒前
25秒前
酷酷的半烟完成签到,获得积分10
26秒前
白尘完成签到,获得积分10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589