清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The use of various statistical methods for authenticity and detection of adulteration in fish and seafood

计算机科学 数据科学 数据挖掘 生物 渔业
作者
Konstantinos V. Kotsanopoulos,Petros V. Martsikalis,Georgios A. Gkafas,Athanasios Exadactylos
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:64 (6): 1553-1571 被引量:5
标识
DOI:10.1080/10408398.2022.2117786
摘要

Various methodologies including genetic analyses, morphometrics, proteomics, lipidomics, metabolomics, etc. are now used or being developed to authenticate fish and seafood. Such techniques usually lead to the generation of enormous amounts of data. The analysis and interpretation of this information can be particularly challenging. Statistical techniques are therefore commonly used to assist in analyzing these data, visualizing trends and differences and extracting conclusions. This review article aims at presenting and discussing statistical methods used in studies on fish and seafood authenticity and adulteration, allowing researchers to consider their options based on previous successes/failures but also offering some recommendations about the future of such techniques. Techniques such as PCA, AMOVA and FST statistics, that allow the differentiation of genetic groups, or techniques such as MANOVA that allow large data sets of morphometric characteristics or elemental differences to be analyzed are discussed. Furthermore, methods such as cluster analysis, DFA, CVA, CDA and heatmaps/Circos plots that allow samples to be differentiated based on their geographical origin are also reviewed and their advantages and disadvantages as found in past studies are given. Finally, mathematical simulations and modeling are presented in a detailed review of studies using them, together with their advantages and limitations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
George发布了新的文献求助10
7秒前
11秒前
领导范儿应助酷酷的大米采纳,获得10
16秒前
knight7m完成签到 ,获得积分10
36秒前
打打应助George采纳,获得10
36秒前
lilylwy完成签到 ,获得积分0
40秒前
量子星尘发布了新的文献求助10
1分钟前
十月完成签到,获得积分10
1分钟前
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
1分钟前
郭强发布了新的文献求助20
1分钟前
1分钟前
2分钟前
田田完成签到 ,获得积分10
2分钟前
不能吃太饱完成签到 ,获得积分10
2分钟前
Una完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助过时的海蓝采纳,获得10
2分钟前
9527完成签到,获得积分10
3分钟前
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
George发布了新的文献求助10
3分钟前
Shandongdaxiu完成签到 ,获得积分10
4分钟前
Zhao完成签到 ,获得积分10
4分钟前
逸风望发布了新的文献求助10
4分钟前
4分钟前
顾矜应助liu采纳,获得10
4分钟前
lwtsy发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
CodeCraft应助George采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
逸风望完成签到,获得积分10
5分钟前
合不着完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664574
求助须知:如何正确求助?哪些是违规求助? 4865385
关于积分的说明 15108047
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582078
邀请新用户注册赠送积分活动 1536167
关于科研通互助平台的介绍 1494567