Early detection of colorectal cancer based on circular DNA and common clinical detection indicators

医学 结直肠癌 内科学 癌胚抗原 逻辑回归 阶段(地层学) 肿瘤科 列线图 胃肠病学 癌症 线性判别分析 人工智能 古生物学 计算机科学 生物
作者
Jian Li,Tao Jiang,Zeng-Ci Ren,Zhenlei Wang,Pengjun Zhang,Guoan Xiang
出处
期刊:World Journal of Gastrointestinal Surgery [Baishideng Publishing Group Co (World Journal of Gastrointestinal Surgery)]
卷期号:14 (8): 833-848 被引量:4
标识
DOI:10.4240/wjgs.v14.i8.833
摘要

Colorectal cancer (CRC) is the third most common cancer worldwide, and it is the second leading cause of death from cancer in the world, accounting for approximately 9% of all cancer deaths. Early detection of CRC is urgently needed in clinical practice.To build a multi-parameter diagnostic model for early detection of CRC.Total 59 colorectal polyps (CRP) groups, and 101 CRC patients (38 early-stage CRC and 63 advanced CRC) for model establishment. In addition, 30 CRP groups, and 62 CRC patients (30 early-stage CRC and 32 advanced CRC) were separately included to validate the model. 51 commonly used clinical detection indicators and the 4 extrachromosomal circular DNA markers NDUFB7, CAMK1D, PIK3CD and PSEN2 that we screened earlier. Four multi-parameter joint analysis methods: binary logistic regression analysis, discriminant analysis, classification tree and neural network to establish a multi-parameter joint diagnosis model.Neural network included carcinoembryonic antigen (CEA), ischemia-modified albumin (IMA), sialic acid (SA), PIK3CD and lipoprotein a (LPa) was chosen as the optimal multi-parameter combined auxiliary diagnosis model to distinguish CRP and CRC group, when it differentiated 59 CRP and 101 CRC, its overall accuracy was 90.8%, its area under the curve (AUC) was 0.959 (0.934, 0.985), and the sensitivity and specificity were 91.5% and 82.2%, respectively. After validation, when distinguishing based on 30 CRP and 62 CRC patients, the AUC was 0.965 (0.930-1.000), and its sensitivity and specificity were 66.1% and 70.0%. When distinguishing based on 30 CRP and 32 early-stage CRC patients, the AUC was 0.960 (0.916-1.000), with a sensitivity and specificity of 87.5% and 90.0%, distinguishing based on 30 CRP and 30 advanced CRC patients, the AUC was 0.970 (0.936-1.000), with a sensitivity and specificity of 96.7% and 86.7%.We built a multi-parameter neural network diagnostic model included CEA, IMA, SA, PIK3CD and LPa for early detection of CRC, compared to the conventional CEA, it showed significant improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极三颜完成签到 ,获得积分10
刚刚
母广明发布了新的文献求助10
1秒前
安静的芝麻完成签到,获得积分10
2秒前
4秒前
爆米花应助shawn采纳,获得10
4秒前
5秒前
积极三颜关注了科研通微信公众号
7秒前
wanci应助聪聪采纳,获得10
7秒前
小熊发布了新的文献求助10
8秒前
Dore完成签到,获得积分20
9秒前
9秒前
卡拉尔德发布了新的文献求助10
9秒前
深情安青应助g_f采纳,获得10
11秒前
西瘡完成签到,获得积分10
11秒前
12秒前
欣欣发布了新的文献求助30
12秒前
英姑应助Fearless采纳,获得10
13秒前
情怀应助母广明采纳,获得10
13秒前
Timo干物类完成签到,获得积分10
14秒前
小熊完成签到,获得积分20
14秒前
笑点低凌珍完成签到 ,获得积分10
14秒前
16秒前
Yi1完成签到,获得积分10
18秒前
19秒前
852应助GJH采纳,获得10
20秒前
匡佐英完成签到,获得积分10
20秒前
Yi1发布了新的文献求助10
20秒前
江小鱼在查文献完成签到,获得积分10
20秒前
聪聪发布了新的文献求助10
22秒前
xumingqing发布了新的文献求助10
23秒前
25秒前
g_f完成签到,获得积分10
27秒前
g_f发布了新的文献求助10
30秒前
Mu完成签到,获得积分10
31秒前
大妙妙完成签到 ,获得积分10
31秒前
32秒前
32秒前
草莓奶昔完成签到 ,获得积分10
33秒前
88完成签到 ,获得积分10
35秒前
wangyanling完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134