Early detection of colorectal cancer based on circular DNA and common clinical detection indicators

医学 结直肠癌 内科学 癌胚抗原 逻辑回归 阶段(地层学) 肿瘤科 列线图 胃肠病学 癌症 线性判别分析 人工智能 古生物学 计算机科学 生物
作者
Jian Li,Tao Jiang,Zeng-Ci Ren,Zhenlei Wang,Pengjun Zhang,Guoan Xiang
出处
期刊:World Journal of Gastrointestinal Surgery [Baishideng Publishing Group Co (World Journal of Gastrointestinal Surgery)]
卷期号:14 (8): 833-848 被引量:4
标识
DOI:10.4240/wjgs.v14.i8.833
摘要

Colorectal cancer (CRC) is the third most common cancer worldwide, and it is the second leading cause of death from cancer in the world, accounting for approximately 9% of all cancer deaths. Early detection of CRC is urgently needed in clinical practice.To build a multi-parameter diagnostic model for early detection of CRC.Total 59 colorectal polyps (CRP) groups, and 101 CRC patients (38 early-stage CRC and 63 advanced CRC) for model establishment. In addition, 30 CRP groups, and 62 CRC patients (30 early-stage CRC and 32 advanced CRC) were separately included to validate the model. 51 commonly used clinical detection indicators and the 4 extrachromosomal circular DNA markers NDUFB7, CAMK1D, PIK3CD and PSEN2 that we screened earlier. Four multi-parameter joint analysis methods: binary logistic regression analysis, discriminant analysis, classification tree and neural network to establish a multi-parameter joint diagnosis model.Neural network included carcinoembryonic antigen (CEA), ischemia-modified albumin (IMA), sialic acid (SA), PIK3CD and lipoprotein a (LPa) was chosen as the optimal multi-parameter combined auxiliary diagnosis model to distinguish CRP and CRC group, when it differentiated 59 CRP and 101 CRC, its overall accuracy was 90.8%, its area under the curve (AUC) was 0.959 (0.934, 0.985), and the sensitivity and specificity were 91.5% and 82.2%, respectively. After validation, when distinguishing based on 30 CRP and 62 CRC patients, the AUC was 0.965 (0.930-1.000), and its sensitivity and specificity were 66.1% and 70.0%. When distinguishing based on 30 CRP and 32 early-stage CRC patients, the AUC was 0.960 (0.916-1.000), with a sensitivity and specificity of 87.5% and 90.0%, distinguishing based on 30 CRP and 30 advanced CRC patients, the AUC was 0.970 (0.936-1.000), with a sensitivity and specificity of 96.7% and 86.7%.We built a multi-parameter neural network diagnostic model included CEA, IMA, SA, PIK3CD and LPa for early detection of CRC, compared to the conventional CEA, it showed significant improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙歪歪发布了新的文献求助10
1秒前
1秒前
暮城完成签到,获得积分10
1秒前
2秒前
云墨完成签到 ,获得积分10
2秒前
4秒前
5秒前
Akim应助caoyy采纳,获得10
5秒前
6秒前
科研通AI2S应助DreamMaker采纳,获得10
6秒前
9秒前
zho发布了新的文献求助30
9秒前
9秒前
ywang发布了新的文献求助10
9秒前
ZD小草完成签到 ,获得积分10
10秒前
健忘曼冬完成签到,获得积分10
11秒前
hkl1542发布了新的文献求助50
12秒前
13秒前
14秒前
KYN完成签到,获得积分10
15秒前
15秒前
桐桐应助叶未晞yi采纳,获得10
15秒前
15秒前
su发布了新的文献求助10
16秒前
123456789完成签到,获得积分10
18秒前
炙热的如柏完成签到,获得积分20
18秒前
19秒前
20秒前
HWei完成签到,获得积分10
20秒前
Ryan完成签到,获得积分10
20秒前
21秒前
Jzhang应助丙队长采纳,获得10
23秒前
24秒前
GXY发布了新的文献求助30
25秒前
Lucas应助专注秋尽采纳,获得10
25秒前
25秒前
754完成签到,获得积分10
25秒前
28秒前
学习猴发布了新的文献求助10
28秒前
充电宝应助炙热的如柏采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824