The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data

支持向量机 特征选择 功能磁共振成像 重性抑郁障碍 人工智能 交叉验证 样本量测定 机器学习 模式识别(心理学) 特征(语言学) 功能连接 计算机科学 心理学 心情 统计 临床心理学 神经科学 数学 哲学 语言学
作者
Peishan Dai,Tong Xiong,Xiaoyan Zhou,Yilin Ou,Yang Li,Xiaoyan Kui,Zailiang Chen,Beiji Zou,Weihui Li,Zhongchao Huang,the REST-meta-MDD Consortium
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:435: 114058-114058 被引量:23
标识
DOI:10.1016/j.bbr.2022.114058
摘要

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results. Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model. The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs. The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天天快乐应助王东采纳,获得10
刚刚
天栽奇才小高应助燕子采纳,获得10
1秒前
红茶猫发布了新的文献求助30
1秒前
1秒前
郝煜祺完成签到,获得积分10
1秒前
jun发布了新的文献求助10
1秒前
迷路宛筠发布了新的文献求助10
2秒前
yy发布了新的文献求助10
2秒前
欣怡高完成签到,获得积分10
2秒前
24601完成签到,获得积分20
2秒前
HXH完成签到,获得积分10
2秒前
Fangdaidai完成签到 ,获得积分10
3秒前
田三毛发布了新的文献求助40
3秒前
慕青应助XYZ采纳,获得10
3秒前
魔幻安筠发布了新的文献求助10
3秒前
3秒前
GHJ发布了新的文献求助10
4秒前
Ava应助goufufu采纳,获得10
4秒前
沉静WT发布了新的文献求助20
4秒前
小二郎应助xiaofei采纳,获得10
5秒前
6秒前
乐乐应助苹果不平采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
炸鸡柳完成签到,获得积分10
7秒前
7秒前
wjx发布了新的文献求助20
7秒前
大模型应助内向的蜜蜂采纳,获得10
8秒前
8秒前
thynkz完成签到,获得积分10
8秒前
文光完成签到,获得积分10
8秒前
大方藏花完成签到 ,获得积分20
9秒前
9秒前
乐乐应助盖盖盖浇饭采纳,获得10
11秒前
11秒前
热心凌寒完成签到,获得积分10
12秒前
12秒前
无花果应助Luna采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414656
求助须知:如何正确求助?哪些是违规求助? 4531611
关于积分的说明 14129070
捐赠科研通 4447008
什么是DOI,文献DOI怎么找? 2439586
邀请新用户注册赠送积分活动 1431639
关于科研通互助平台的介绍 1409294