已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data

支持向量机 特征选择 功能磁共振成像 重性抑郁障碍 人工智能 交叉验证 样本量测定 机器学习 模式识别(心理学) 特征(语言学) 功能连接 计算机科学 心理学 心情 统计 临床心理学 神经科学 数学 语言学 哲学
作者
Peishan Dai,Tong Xiong,Xiaoyan Zhou,Yilin Ou,Yang Li,Xiaoyan Kui,Zailiang Chen,Beiji Zou,Weihui Li,Zhongchao Huang,the REST-meta-MDD Consortium
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:435: 114058-114058 被引量:23
标识
DOI:10.1016/j.bbr.2022.114058
摘要

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results. Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model. The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs. The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
FOREST关注了科研通微信公众号
3秒前
面包圈完成签到 ,获得积分10
4秒前
王馨雨完成签到,获得积分10
5秒前
张佳星完成签到 ,获得积分10
7秒前
7秒前
8秒前
独特的斑马完成签到 ,获得积分10
10秒前
昭昭如我愿完成签到,获得积分10
12秒前
12秒前
自觉的夏之完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
18秒前
19秒前
何木萧完成签到,获得积分10
21秒前
22秒前
shame完成签到 ,获得积分10
26秒前
善学以致用应助dlfg采纳,获得10
26秒前
记得吃蔬菜完成签到,获得积分10
27秒前
文艺的小之完成签到,获得积分10
27秒前
FOREST发布了新的文献求助10
27秒前
骑猪看月完成签到,获得积分10
28秒前
好有气质饭完成签到,获得积分20
30秒前
30秒前
可爱的香菇完成签到 ,获得积分10
32秒前
柔弱熊猫完成签到 ,获得积分10
33秒前
iCloud完成签到,获得积分10
34秒前
RSU完成签到,获得积分10
34秒前
YJH完成签到,获得积分10
34秒前
华仔应助自觉的夏之采纳,获得10
35秒前
张一二二二完成签到,获得积分10
36秒前
小马甲应助记得吃蔬菜采纳,获得10
36秒前
36秒前
顺利松鼠完成签到 ,获得积分10
37秒前
不能随便完成签到,获得积分10
37秒前
39秒前
还好完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611743
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889839
捐赠科研通 4726779
什么是DOI,文献DOI怎么找? 2545886
邀请新用户注册赠送积分活动 1510326
关于科研通互助平台的介绍 1473221