已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data

支持向量机 特征选择 功能磁共振成像 重性抑郁障碍 人工智能 交叉验证 样本量测定 机器学习 模式识别(心理学) 特征(语言学) 功能连接 计算机科学 心理学 心情 统计 临床心理学 神经科学 数学 哲学 语言学
作者
Peishan Dai,Tong Xiong,Xiaoyan Zhou,Yilin Ou,Yang Li,Xiaoyan Kui,Zailiang Chen,Beiji Zou,Weihui Li,Zhigang Huang,the REST-meta-MDD Consortium
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:435: 114058-114058 被引量:13
标识
DOI:10.1016/j.bbr.2022.114058
摘要

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results. Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model. The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs. The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
1秒前
1秒前
xjcy应助科研通管家采纳,获得30
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
MP应助科研通管家采纳,获得20
1秒前
顾矜应助Yihvan采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
mafukairi应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
独特觅翠应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Endlessway应助科研通管家采纳,获得20
1秒前
3秒前
斯文败类应助plumephoenix采纳,获得10
4秒前
4秒前
5秒前
6秒前
初七123完成签到 ,获得积分10
6秒前
533完成签到,获得积分20
6秒前
7秒前
充电宝应助阔达七言采纳,获得10
8秒前
8秒前
TWO宝发布了新的文献求助10
9秒前
LiuZhe发布了新的文献求助30
9秒前
萌新发布了新的文献求助10
11秒前
mouset270发布了新的文献求助30
12秒前
13秒前
belajar完成签到,获得积分10
13秒前
未闻花名发布了新的文献求助10
13秒前
方静怡完成签到,获得积分10
15秒前
kkk完成签到,获得积分20
15秒前
白开水发布了新的文献求助10
15秒前
万能图书馆应助朴素太阳采纳,获得10
16秒前
自信凡松发布了新的文献求助30
17秒前
弹剑作歌完成签到,获得积分10
17秒前
OliAn完成签到,获得积分10
19秒前
零零发布了新的文献求助10
20秒前
TWO宝完成签到,获得积分10
21秒前
从容芮应助敏感小夏采纳,获得30
24秒前
粗暴的达发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229357
求助须知:如何正确求助?哪些是违规求助? 2877059
关于积分的说明 8197722
捐赠科研通 2544406
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749