亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data

支持向量机 特征选择 功能磁共振成像 重性抑郁障碍 人工智能 交叉验证 样本量测定 机器学习 模式识别(心理学) 特征(语言学) 功能连接 计算机科学 心理学 心情 统计 临床心理学 神经科学 数学 语言学 哲学
作者
Peishan Dai,Tong Xiong,Xiaoyan Zhou,Yilin Ou,Yang Li,Xiaoyan Kui,Zailiang Chen,Beiji Zou,Weihui Li,Zhongchao Huang,the REST-meta-MDD Consortium
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:435: 114058-114058 被引量:23
标识
DOI:10.1016/j.bbr.2022.114058
摘要

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results. Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model. The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs. The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
非洲大象完成签到,获得积分10
25秒前
28秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
烟花应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
无限暖暖发布了新的文献求助10
33秒前
1分钟前
hh完成签到,获得积分10
1分钟前
JIANHUAN完成签到 ,获得积分10
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xm完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
TingtingGZ发布了新的文献求助10
2分钟前
zhjl完成签到,获得积分10
2分钟前
Li_KK完成签到,获得积分10
3分钟前
3分钟前
快叫豆哥发布了新的文献求助10
3分钟前
土壤情缘完成签到,获得积分10
3分钟前
神外王001完成签到 ,获得积分10
3分钟前
4分钟前
Qinghua完成签到,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
人双山几文完成签到 ,获得积分10
4分钟前
今天烤可颂了嘛完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502902
求助须知:如何正确求助?哪些是违规求助? 4598594
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483863
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439745