[Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer].

接收机工作特性 鼻咽癌 医学 随机森林 人工智能 决策树 机器学习 阶段(地层学) 统计 内科学 肿瘤科 计算机科学 数学 放射治疗 生物 古生物学
作者
H Zhang,Jin Lü,Chaoyang Jiang,Min Fang
出处
期刊:PubMed 卷期号:43 (2): 271-279 被引量:1
标识
DOI:10.12122/j.issn.1673-4254.2023.02.16
摘要

To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
CLX。完成签到,获得积分10
1秒前
2秒前
2秒前
求助人员发布了新的文献求助10
3秒前
5秒前
北鸢完成签到,获得积分10
5秒前
烂漫的凡波完成签到,获得积分10
5秒前
5秒前
hui发布了新的文献求助10
7秒前
小蜗牛完成签到,获得积分10
7秒前
番茄鱼完成签到 ,获得积分10
7秒前
qqq完成签到 ,获得积分10
7秒前
gooofy发布了新的文献求助50
8秒前
9秒前
9秒前
10秒前
j7完成签到 ,获得积分10
10秒前
10秒前
LaTeXer应助qinqinwy采纳,获得10
11秒前
12秒前
yznfly应助wang采纳,获得180
12秒前
believe完成签到,获得积分20
13秒前
qiuqi发布了新的文献求助10
13秒前
QLLW完成签到,获得积分10
14秒前
王cc发布了新的文献求助10
14秒前
jiuwu完成签到,获得积分10
15秒前
星辰大海应助Lu采纳,获得10
15秒前
沉静的煎蛋完成签到,获得积分10
16秒前
18秒前
18秒前
FashionBoy应助活泼醉冬采纳,获得10
19秒前
NexusExplorer应助hui采纳,获得10
19秒前
陈杰完成签到,获得积分10
21秒前
昭明完成签到 ,获得积分10
21秒前
璃光浮月发布了新的文献求助10
22秒前
22秒前
AquaR发布了新的文献求助10
22秒前
Rgly完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851