[Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer].

接收机工作特性 鼻咽癌 医学 随机森林 人工智能 决策树 机器学习 阶段(地层学) 统计 内科学 肿瘤科 计算机科学 数学 放射治疗 生物 古生物学
作者
H Zhang,Jin Lü,Chaoyang Jiang,Min Fang
出处
期刊:PubMed 卷期号:43 (2): 271-279 被引量:1
标识
DOI:10.12122/j.issn.1673-4254.2023.02.16
摘要

To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
magic发布了新的文献求助10
1秒前
石幻枫完成签到 ,获得积分10
11秒前
文艺凉面完成签到 ,获得积分10
13秒前
小可爱完成签到,获得积分10
13秒前
15秒前
magic完成签到,获得积分10
16秒前
16秒前
yu完成签到 ,获得积分10
17秒前
17秒前
科目三应助淡然的宛秋采纳,获得10
20秒前
22秒前
chenzao完成签到 ,获得积分10
23秒前
阎听筠完成签到 ,获得积分10
25秒前
26秒前
清风完成签到,获得积分10
28秒前
28秒前
31秒前
31秒前
du完成签到,获得积分20
32秒前
健壮惋清完成签到 ,获得积分10
33秒前
35秒前
36秒前
小夏完成签到 ,获得积分10
36秒前
41秒前
白衣修身发布了新的文献求助10
43秒前
抹茶冰淇淋完成签到 ,获得积分10
45秒前
46秒前
寻道图强应助无奈的灵松采纳,获得30
51秒前
lhh1213发布了新的文献求助10
53秒前
56秒前
du发布了新的文献求助10
56秒前
852应助dong采纳,获得10
58秒前
1分钟前
x小猫发布了新的文献求助10
1分钟前
1分钟前
yqzhang发布了新的文献求助10
1分钟前
doctorw完成签到,获得积分10
1分钟前
风趣的含海完成签到,获得积分10
1分钟前
1分钟前
科目三应助daydayup采纳,获得10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187