[Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer].

接收机工作特性 鼻咽癌 医学 随机森林 人工智能 决策树 机器学习 阶段(地层学) 统计 内科学 肿瘤科 计算机科学 数学 放射治疗 生物 古生物学
作者
H Zhang,Jin Lü,Chaoyang Jiang,Min Fang
出处
期刊:PubMed 卷期号:43 (2): 271-279 被引量:1
标识
DOI:10.12122/j.issn.1673-4254.2023.02.16
摘要

To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Gandiva完成签到,获得积分10
3秒前
3秒前
向日葵发布了新的文献求助10
4秒前
科研通AI6应助JJJ采纳,获得10
8秒前
8秒前
jf关注了科研通微信公众号
9秒前
金条完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
要减肥白开水完成签到,获得积分10
12秒前
ChristineJay完成签到,获得积分10
12秒前
20010完成签到,获得积分10
13秒前
SixDogs发布了新的文献求助13
14秒前
14秒前
搞笑地雷完成签到 ,获得积分10
14秒前
11完成签到,获得积分10
15秒前
贺格平发布了新的文献求助10
15秒前
小董完成签到,获得积分20
18秒前
BENpao123发布了新的文献求助10
18秒前
所所应助无问西东采纳,获得10
19秒前
19秒前
20秒前
bombing2048完成签到 ,获得积分10
21秒前
Hello应助谦让寄容采纳,获得10
21秒前
香蕉觅云应助Wenyilong采纳,获得10
21秒前
23秒前
lml发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
刻苦秋尽完成签到,获得积分20
24秒前
空白发布了新的文献求助10
24秒前
justin完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
科研通AI6应助lex采纳,获得10
26秒前
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648