已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer].

接收机工作特性 鼻咽癌 医学 随机森林 人工智能 决策树 机器学习 阶段(地层学) 统计 内科学 肿瘤科 计算机科学 数学 放射治疗 生物 古生物学
作者
H Zhang,Jin Lü,Chaoyang Jiang,Min Fang
出处
期刊:PubMed 卷期号:43 (2): 271-279 被引量:1
标识
DOI:10.12122/j.issn.1673-4254.2023.02.16
摘要

To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟一发布了新的文献求助10
3秒前
6秒前
ku_zhang完成签到 ,获得积分10
6秒前
59完成签到 ,获得积分10
9秒前
10秒前
11秒前
拼搏灰狼完成签到 ,获得积分10
11秒前
14秒前
堪冥发布了新的文献求助10
16秒前
16秒前
16秒前
华仔应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
hyx完成签到,获得积分10
19秒前
英勇羿完成签到,获得积分10
20秒前
21秒前
顾矜应助Yuan采纳,获得10
21秒前
21秒前
24秒前
25秒前
hyx发布了新的文献求助10
27秒前
28秒前
共享精神应助虚心的不二采纳,获得10
28秒前
28秒前
keke驳回了Akim应助
29秒前
lili发布了新的文献求助10
29秒前
29秒前
esse1990发布了新的文献求助100
29秒前
堪冥完成签到,获得积分20
30秒前
逗号先生发布了新的文献求助10
30秒前
31秒前
31秒前
努力的淼淼完成签到 ,获得积分10
32秒前
浅浅发布了新的文献求助10
32秒前
guozizi发布了新的文献求助10
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629