The Interplay of Earnings, Ratings, and Penalties on Sharing Platforms: An Empirical Investigation

收益 激励 劳动力 灵活性(工程) 情感(语言学) 业务 工作(物理) 营销 劳动经济学 经济 微观经济学 会计 心理学 工程类 管理 机械工程 经济增长 沟通
作者
Yuqian Xu,Baile Lu,Anindya Ghose,Hongyan Dai,Weihua Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (10): 6128-6146 被引量:17
标识
DOI:10.1287/mnsc.2023.4761
摘要

On-demand delivery through sharing platforms represents a rapidly expanding segment of the global workforce. The emergence of sharing platforms enables gig workers to choose when and where to work, allowing them to do so in a flexible manner. However, such flexibility brings notorious challenges to platforms in managing the gig workforce. Thus, understanding the incentive and behavioral issues of gig workers in this new business model is inherently meaningful. This paper investigates how the incentive mechanisms of sharing platforms—earnings, ratings, and penalties—affect the working decisions of gig workers and their nuanced relationships. To achieve this goal, we use data from one leading on-demand delivery platform with more than 50 million active consumers in China and implement a two-stage Heckman model with instrumental variables to estimate the impact of earnings, ratings, and penalties. We first show that better ratings motivate gig workers to work more. However, interestingly, when ratings are employed together with earnings, the two positive effects of ratings and earnings can be substitutes for each other. Second, we reveal that higher past penalties discourage workers from working more, whereas, interestingly, workers with higher past penalties tend to be more sensitive toward an increase in earnings. Finally, we conduct follow-up surveys to understand the underlying mechanisms of the observed moderating effects from both psychological and economic perspectives. The ultimate goal of this work is to provide managerial implications to help platform managers understand how earnings, ratings, and penalties work together to affect gig workers’ working decisions and how to manage high- and low-quality workers. This paper was accepted by David Simchi-Levi, entrepreneurship and innovation. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72192823, 72172169, 71821002, 91646125, 72071206, 72231011, 72025405, and 72088101] and Program for Innovation Research at the Central University of Finance and Economics. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4761 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
汉堡包应助煜琪采纳,获得10
2秒前
8R60d8应助Francis采纳,获得10
2秒前
小王发布了新的文献求助10
4秒前
安于此生完成签到 ,获得积分10
5秒前
Genmii完成签到,获得积分10
5秒前
沙拉完成签到,获得积分20
6秒前
Sylvia完成签到,获得积分10
7秒前
吃的饱饱呀完成签到 ,获得积分10
8秒前
10秒前
11秒前
12秒前
吴未发布了新的文献求助10
13秒前
奥利奥发布了新的文献求助10
14秒前
内秀发布了新的文献求助10
16秒前
16秒前
可爱的函函应助roy采纳,获得30
17秒前
18秒前
18秒前
柯南发布了新的文献求助10
19秒前
高兴的萤完成签到 ,获得积分10
20秒前
21秒前
21秒前
abrakadabra完成签到,获得积分10
22秒前
23秒前
高兴的萤关注了科研通微信公众号
24秒前
大个应助黙宇循光采纳,获得10
24秒前
你好发布了新的文献求助10
25秒前
打打应助吴未采纳,获得10
26秒前
覃小冬发布了新的文献求助10
26秒前
27秒前
泽佳发布了新的文献求助10
27秒前
27秒前
28秒前
奥利奥完成签到,获得积分10
28秒前
enchanted发布了新的文献求助10
29秒前
mygod发布了新的文献求助10
31秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738