Non-targeted HPLC–FLD fingerprinting for the classification, authentication, and fraud quantitation of Guizhou paprika by chemometrics

线性判别分析 偏最小二乘回归 化学计量学 主成分分析 随机森林 模式识别(心理学) 人工智能 指纹(计算) 数学 统计 计算机科学 机器学习
作者
Xiao-Dong Sun,Min Zhang,Shuo Zhang,Pengjiao Wang,Junhua Chen,Xiu-Li Gao
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:120: 105346-105346 被引量:1
标识
DOI:10.1016/j.jfca.2023.105346
摘要

In this work, non-targeted strategies based on high-performance liquid chromatography with fluorescence detection (HPLC–FLD) fingerprints were proposed as chemical markers to address the classification, authentication and fraud quantitation of paprika from six geographical origins in Guizhou, China. Partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models using first-order fingerprints, while n-way partial least squares-discriminant analysis (NPLS-DA) was used to build the discriminant model using second-order fingerprints. Given the large differences in the paprika fingerprints from different origins, all methods achieved satisfactory classification results, with the recognition rate of training set and prediction set reaching 100%. Moreover, the fingerprints were also proposed to detect and quantify three paprika geographical origin blend cases by partial least squares (PLS), random forest (RF) and N-way partial least squares (N-PLS) regression algorithms. When first-order fingerprints were applied, PLS showed much better results than RF for all adulteration cases studied. Improved performances were observed with N-PLS using second-order fingerprints, exhibiting similar calibration errors and lower prediction errors (≤ 2.53%) in comparison to PLS using first-order fingerprints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正经俠发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
学科共进完成签到,获得积分10
3秒前
百草27完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
绵马紫萁发布了新的文献求助10
6秒前
7秒前
fzhou完成签到 ,获得积分10
7秒前
尘雾发布了新的文献求助10
7秒前
8秒前
一一发布了新的文献求助20
8秒前
8秒前
Aixia完成签到 ,获得积分10
9秒前
葡萄糖完成签到,获得积分10
9秒前
哈哈完成签到,获得积分10
9秒前
在水一方应助CC采纳,获得10
9秒前
9秒前
余笙完成签到 ,获得积分10
10秒前
神勇的雅香应助科研混子采纳,获得10
10秒前
TT发布了新的文献求助10
11秒前
李顺完成签到,获得积分20
12秒前
ayin发布了新的文献求助10
12秒前
wait发布了新的文献求助10
12秒前
我是站长才怪应助xg采纳,获得10
13秒前
童话艺术佳完成签到,获得积分10
13秒前
稀罕你完成签到,获得积分10
13秒前
junzilan发布了新的文献求助10
13秒前
anny.white完成签到,获得积分10
14秒前
科研通AI5应助平常的毛豆采纳,获得10
16秒前
SciGPT应助paul采纳,获得10
19秒前
21秒前
英姑应助书生采纳,获得10
22秒前
科研钓鱼佬完成签到,获得积分10
23秒前
25秒前
petrichor应助C_Cppp采纳,获得10
25秒前
nan完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824