Non-targeted HPLC–FLD fingerprinting for the classification, authentication, and fraud quantitation of Guizhou paprika by chemometrics

线性判别分析 偏最小二乘回归 化学计量学 主成分分析 随机森林 模式识别(心理学) 人工智能 指纹(计算) 数学 统计 计算机科学 机器学习
作者
Xiao-Dong Sun,Min Zhang,Shuo Zhang,Pengjiao Wang,Junhua Chen,Xiu-Li Gao
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:120: 105346-105346 被引量:1
标识
DOI:10.1016/j.jfca.2023.105346
摘要

In this work, non-targeted strategies based on high-performance liquid chromatography with fluorescence detection (HPLC–FLD) fingerprints were proposed as chemical markers to address the classification, authentication and fraud quantitation of paprika from six geographical origins in Guizhou, China. Partial least squares-discriminant analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF) were used to build discriminant models using first-order fingerprints, while n-way partial least squares-discriminant analysis (NPLS-DA) was used to build the discriminant model using second-order fingerprints. Given the large differences in the paprika fingerprints from different origins, all methods achieved satisfactory classification results, with the recognition rate of training set and prediction set reaching 100%. Moreover, the fingerprints were also proposed to detect and quantify three paprika geographical origin blend cases by partial least squares (PLS), random forest (RF) and N-way partial least squares (N-PLS) regression algorithms. When first-order fingerprints were applied, PLS showed much better results than RF for all adulteration cases studied. Improved performances were observed with N-PLS using second-order fingerprints, exhibiting similar calibration errors and lower prediction errors (≤ 2.53%) in comparison to PLS using first-order fingerprints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mz发布了新的文献求助10
1秒前
黄金天下完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
2秒前
瑶林完成签到,获得积分20
2秒前
hkh发布了新的文献求助10
2秒前
3秒前
可爱的函函应助蜗壳采纳,获得10
3秒前
科目三应助adore采纳,获得10
4秒前
xinggui发布了新的文献求助10
4秒前
joker_k完成签到,获得积分10
4秒前
5秒前
宜醉宜游宜睡举报七zi求助涉嫌违规
6秒前
范慧晨发布了新的文献求助10
6秒前
活泼的诗桃完成签到,获得积分10
6秒前
7秒前
英俊的铭应助nhscyhy采纳,获得10
7秒前
杨果果关注了科研通微信公众号
8秒前
9秒前
着急的寒烟应助freedom313514采纳,获得10
9秒前
MMMMM发布了新的文献求助10
9秒前
Ava应助Leo_Sun采纳,获得10
10秒前
张三发布了新的文献求助10
10秒前
日喝抽打发布了新的文献求助10
10秒前
瑶林发布了新的文献求助30
11秒前
子云完成签到,获得积分10
11秒前
酷波er应助温和的薯条采纳,获得10
12秒前
nn发布了新的文献求助10
12秒前
14秒前
冷静的仙人掌完成签到,获得积分10
14秒前
张茜完成签到,获得积分10
15秒前
16秒前
美满的酒窝完成签到,获得积分10
16秒前
Hello应助MMMMM采纳,获得10
17秒前
sunwending发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
顾矜应助怡然数据线采纳,获得10
20秒前
小胡完成签到,获得积分20
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309402
求助须知:如何正确求助?哪些是违规求助? 2942782
关于积分的说明 8510751
捐赠科研通 2617868
什么是DOI,文献DOI怎么找? 1430622
科研通“疑难数据库(出版商)”最低求助积分说明 664180
邀请新用户注册赠送积分活动 649364