Enhancing dimensional accuracy of small parts through modelling and parametric optimization of the FDM 3D printing process using GA-ANN

熔融沉积模型 3D打印 快速成型 填充 参数统计 过程(计算) 人工神经网络 遗传算法 计算机科学 机械工程 图层(电子) 制作 工程制图 材料科学 工程类 结构工程 复合材料 人工智能 数学 机器学习 医学 统计 替代医学 病理 操作系统
作者
Mannu Yadav,Ashish Kaushik,Ramesh Kumar Garg,Mohit Yadav,Deepak Chhabra,Shivam Rohilla,Hitesh Kumar Sharma
标识
DOI:10.1109/iccmso58359.2022.00030
摘要

Nowadays, almost every manufacturing industry primarily focuses on precision manufacturing, which can now be easily possible due to advanced rapid prototyping techniques to achieve their overarching goals. Small parts fabrication necessitates ever-more-careful workmanship and strict environmental controls as all materials inevitably expand and contract due to environmental changes, which can raise costs and lengthen the production process. One rapid prototyping method is frequently used to print small objects is fused deposition modelling. In the proposed work, the significant FDM printing parameters (no. of contours, infill density, and layer thickness) are optimized for improving the dimensional precision of FDM printed small specimens of 1mm x 2mm x 3mm. Twenty experimental runs were designed by employing a face-centred central composite design (FCCD) methodology to analyse the effect of input variables on the fabricated specimen. For training and optimization, hybrid statistical tools and artificial neural networks (ANN) integrated with genetic algorithm (ANN-GA) are utilized to obtain the optimized combination of input parameters. Validation tests were performed, sequentially to confirm the various created models for the selection of best process parameter. It has been observed that the minimum percentage change accomplished with GA-ANN approach in height, length and breadth is 1.9455 %, at input variables (Infill density: 55.85 %, Layer thickness: 0.1mm, no of contours: 8), 0.29542% at input variables (Infill density: 23.31, Layer thickness: 0.18, no of contours: 7), 0.4648 % at input variables (Infill density: 48.541 %, Layer thickness: 0.1 mm, no of contours: 3), are best forecasted results obtained using GA-ANN approach and the same has been validated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erina完成签到 ,获得积分10
刚刚
刚刚
入海完成签到,获得积分10
刚刚
科研通AI5应助jeep先生采纳,获得10
刚刚
1秒前
酷波er应助ll200207采纳,获得10
2秒前
CLF发布了新的文献求助10
2秒前
2秒前
搞怪羊完成签到,获得积分20
3秒前
在水一方应助qd采纳,获得10
3秒前
一一发布了新的文献求助10
3秒前
充电宝应助anna521212采纳,获得20
4秒前
5秒前
Quan发布了新的文献求助10
6秒前
wang发布了新的文献求助10
6秒前
wasiwan完成签到,获得积分10
7秒前
Xxi完成签到,获得积分10
9秒前
10秒前
CLF完成签到,获得积分10
10秒前
11秒前
火星上的芹菜完成签到,获得积分10
11秒前
斯文败类应助qiyr采纳,获得10
12秒前
12秒前
EASA完成签到,获得积分10
13秒前
怕孤单的凝天关注了科研通微信公众号
15秒前
北沐发布了新的文献求助10
15秒前
一一完成签到,获得积分10
15秒前
XS_QI发布了新的文献求助10
15秒前
奶味蓝发布了新的文献求助10
17秒前
zlz完成签到,获得积分10
18秒前
FashionBoy应助小哲采纳,获得10
18秒前
张继豪发布了新的文献求助20
18秒前
19秒前
19秒前
科研通AI5应助LHL采纳,获得10
20秒前
青4096发布了新的文献求助10
20秒前
王淇茜完成签到,获得积分10
21秒前
山水有重逢完成签到,获得积分10
23秒前
rachel发布了新的文献求助10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519